Publications by authors named "Evan Sheridan"

Determining the ground and excited state properties of materials is considered one of the most promising applications of quantum computers. On near-term hardware, the limiting constraint on such simulations is the requisite circuit depths and qubit numbers, which currently lie well beyond near-term capabilities. Here we develop a quantum algorithm which reduces the estimated cost of material simulations.

View Article and Find Full Text PDF

Magnetoelectrics, materials that exhibit coupling between magnetic and electric degrees of freedom, not only offer a rich environment for studying the fundamental materials physics of spin-charge coupling but also present opportunities for future information technology paradigms. We present results of electric field manipulation of spins in a ferroelectric medium using dilute ferric ion-doped lead titanate as a model system. Combining first-principles calculations and electron paramagnetic resonance (EPR), we show that the ferric ion spins are preferentially aligned perpendicular to the ferroelectric polar axis, which we can manipulate using an electric field.

View Article and Find Full Text PDF