In response to a suitably aversive skin stimulus, the marine mollusk launches an escape swim followed by several minutes of high-speed crawling. The two escape behaviors are highly dissimilar: whereas the swim is a muscular behavior involving alternating ventral and dorsal whole body flexions, the crawl is a nonrhythmic gliding behavior mediated by the beating of foot cilia. The serotonergic dorsal swim interneurons (DSIs) are members of the swim central pattern generator (CPG) and also strongly drive crawling.
View Article and Find Full Text PDFSpectral inference on multiple networks is a rapidly-developing subfield of graph statistics. Recent work has demonstrated that joint, or simultaneous, spectral embedding of multiple independent networks can deliver more accurate estimation than individual spectral decompositions of those same networks. Such inference procedures typically rely heavily on independence assumptions across the multiple network realizations, and even in this case, little attention has been paid to the induced network correlation that can be a consequence of such joint embeddings.
View Article and Find Full Text PDFThe development of transgenic invertebrate preparations in which the activity of specifiable sets of neurons can be recorded and manipulated with light represents a revolutionary advance for studies of the neural basis of behavior. However, a downside of this development is its tendency to focus investigators on a very small number of "designer" organisms (e.g.
View Article and Find Full Text PDFBackground: Identifying effective strategies to prevent memory loss in AD has eluded researchers to date, and likely reflects insufficient understanding of early pathogenic mechanisms directly affecting memory encoding. As synaptic loss best correlates with memory loss in AD, refocusing efforts to identify factors driving synaptic impairments may provide the critical insight needed to advance the field. In this study, we reveal a previously undescribed cascade of events underlying pre and postsynaptic hippocampal signaling deficits linked to cognitive decline in AD.
View Article and Find Full Text PDFThe pedal ganglion of the nudibranch gastropod Tritonia diomedea has been the focus of neurophysiological studies for more than 50 yr. These investigations have examined the neural basis of behaviors as diverse as swimming, crawling, reflex withdrawals, orientation to water flow, orientation to the earth's magnetic field, and learning. Despite this sustained research focus, most studies have confined themselves to the layer of neurons that are visible on the ganglion surface, leaving many neurons, which reside in deeper layers, largely unknown and thus unstudied.
View Article and Find Full Text PDFStudies of the mechanisms underlying memory formation have largely focused on the synapse. However, recent evidence suggests that additional, non-synaptic, mechanisms also play important roles in this process. We recently described a novel memory mechanism whereby a particular class of neurons was recruited into the escape swim network with sensitization, a non-associative form of learning.
View Article and Find Full Text PDFPrior studies have found that functional networks can rapidly add neurons as they build short-term memories, yet little is known about the principles underlying this process. Using voltage-sensitive dye imaging, we found that short-term sensitization of Tritonia's swim motor program involves rapid expansion of the number of participating neurons. Tracking neurons across trials revealed that this involves the conversion of recently discovered variably participating neurons to reliable status.
View Article and Find Full Text PDFVoltage-sensitive dye (VSD) imaging is a powerful technique that can provide, in single experiments, a large-scale view of network activity unobtainable with traditional sharp electrode recording methods. Here we review recent work using VSDs to study small networks and highlight several results from this approach. Topics covered include circuit mapping, network multifunctionality, the network basis of decision making, and the presence of variably participating neurons in networks.
View Article and Find Full Text PDFTo what extent are motor networks underlying rhythmic behaviors rigidly hard-wired versus fluid and dynamic entities? Do the members of motor networks change from moment-to-moment or from motor program episode-to-episode? These are questions that can only be addressed in systems where it is possible to monitor the spiking activity of networks of neurons during the production of motor programs. We used large-scale voltage-sensitive dye (VSD) imaging followed by Independent Component Analysis spike-sorting to examine the extent to which the neuronal network underlying the escape swim behavior of Tritonia diomedea is hard-wired versus fluid from a moment-to-moment perspective. We found that while most neurons were dedicated to the swim network, a small but significant proportion of neurons participated in a surprisingly variable manner.
View Article and Find Full Text PDFIndependent component analysis (ICA) is a technique that can be used to extract the source signals from sets of signal mixtures where the sources themselves are unknown. The analysis of optical recordings of invertebrate neuronal networks with fast voltage-sensitive dyes could benefit greatly from ICA. These experiments can generate hundreds of voltage traces containing both redundant and mixed recordings of action potentials originating from unknown numbers of neurons.
View Article and Find Full Text PDFThe lateral accessory lobe (LAL) and the ventral protocerebrum (VPC) are a pair of symmetrical neural structures in the insect brain. The LAL-VPC is regarded as the major target of olfactory responding neurons as well as the control center for olfactory-evoked sequential zigzag turns. Previous studies of the silkworm moth Bombyx mori showed that these turns are controlled by long-lasting anti-phasic activities of the flip-flopping descending neurons with dendrites in the LAL-VPC.
View Article and Find Full Text PDFJ Neurophysiol
November 2008
Enhancement of presynaptic Ca(2+) signals is widely recognized as a potential mechanism for heterosynaptic potentiation of neurotransmitter release. Here we show that stimulation of a serotonergic interneuron increased spike-evoked Ca(2+) in a manner consistent with its neuromodulatory effect on synaptic transmission. In the gastropod mollusk, Tritonia diomedea, stimulation of a serotonergic dorsal swim interneuron (DSI) at physiological rates heterosynaptically enhances the strength of output synapses made by another swim interneuron, C2, onto neurons in the pedal ganglion.
View Article and Find Full Text PDFRhythmic bursting in neurons is accompanied by dynamic changes in intracellular Ca(2+) concentration. These Ca(2+) signals may be caused by membrane potential changes during bursting and/or by synaptic inputs. We determined that membrane potential is responsible for most, if not all, of the cytoplasmic Ca(2+) signal recorded during rhythmic bursting in two neurons of the escape swim central pattern generator (CPG) of the mollusk, Tritonia diomedea: ventral swim interneuron B (VSI) and cerebral neuron 2 (C2).
View Article and Find Full Text PDFIn the male silkmoth Bombyx mori, olfactory information is relayed from olfactory receptor neurons in the antennae to the antennal lobe, and then to a variety of protocerebral neuropils. Currently, very little is known about neuromodulators that may affect the dynamics of this olfactory neural network. Immunocytochemical studies have revealed the presence of a serotonin-immunoreactive (SI) neuron that, in several insect species, is thought to provide feedback to the antennal lobe.
View Article and Find Full Text PDF