The tumor microenvironment (TME) has emerged as a valuable therapeutic target in glioblastoma (GBM), as it promotes tumorigenesis via an increased production of reactive oxygen species (ROS). Immune cells such as microglia accumulate near the tumor and its hypoxic core, fostering tumor proliferation and angiogenesis. In this study, we explored the therapeutic potential of natural polyphenols with antioxidant and anti-inflammatory properties.
View Article and Find Full Text PDFThe purpose of the current study is to uncover the impact of small liganded gold nanoclusters with 10 gold atoms and 10 glutathione ligands (AuSG) on several biomarkers in human microglia. We established the links connecting the atomically precise structure of AuSG with their properties and changes in several biomolecules under oxidative stress. AuSG caused the loss of mitochondrial metabolic activity, increased lipid peroxidation and translocation of an alarmin molecule, high mobility group box 1 (HMGB1), from the nucleus to the cytosol.
View Article and Find Full Text PDFA fundamental problem in oncology is that anticancer chemotherapeutics kill both cancer and healthy cells in the surrounding tissues. Resveratrol is a natural antioxidant with intriguing and opposing biological properties: it reduces viability of some cancer cells but not of non-transformed ones (in equimolar concentrations). Therefore, we examined resveratrol in human non-transformed primary astrocytes and astrocytoma.
View Article and Find Full Text PDFBranched architectures with asymmetric polymeric arms provide an advantageous platform for the construction of tailored nanocarriers for therapeutic interventions. Simple and adaptable synthetic methodologies to amphiphilic miktoarm star polymers have been developed in which spatial location of reactive oxygen species (ROS) and glutathione (GSH) responsive entities is articulated to be on the corona shell surface or inside the core. The design of such architectures is facilitated through versatile building blocks and selected combinations of ring-opening polymerization, Steglich esterification, and alkyne-azide click reactions.
View Article and Find Full Text PDFUltra-small gold nanoclusters (AuNCs) with designed sizes and ligands are gaining popularity for biomedical purposes and ultimately for human imaging and therapeutic applications. Human non-tumor brain cells, astrocytes, are of particular interest because they are abundant and play a role in functional regulation of neurons under physiological and pathological conditions. Human primary astrocytes were treated with AuNCs of varying sizes (Au10, Au15, Au18, Au25) and ligand composition (glutathione, polyethylene glycol, N-acetyl cysteine).
View Article and Find Full Text PDFUnique physicochemical features place gold nanoclusters at the forefront of nanotechnology for biological and biomedical applications. To date, information on the interactions of gold nanoclusters with biological macromolecules is limited and restricts their use in living cells. : Our multidisciplinary study begins to fill the current knowledge gap by focusing on lysosomes and associated biological pathways in U251N human glioblastoma cells.
View Article and Find Full Text PDFPolyethylene glycol grafted pyrrole-based conjugated polymers are synthesized through a one-pot multicomponent methodology, the self-assemblies of which enable nanoparticle size-selective encapsulation of drug molecules and their sustained release. Efficient loading of curcumin through drug-nanoparticle core interactions is probed using FRET, and the inherently fluorescent nature of polypyrrole could be used to detect these nanocarriers intracellularly.
View Article and Find Full Text PDF