Publications by authors named "Evan Perry"

Overexpression of myeloid cell leukemia-1 (Mcl-1) in cancers correlates with high tumor grade and poor survival. Additionally, Mcl-1 drives intrinsic and acquired resistance to many cancer therapeutics, including B cell lymphoma 2 family inhibitors, proteasome inhibitors, and antitubulins. Therefore, Mcl-1 inhibition could serve as a strategy to target cancers that require Mcl-1 to evade apoptosis.

View Article and Find Full Text PDF
Article Synopsis
  • The PD-1 immune checkpoint pathway is a well-recognized target for treating cancer through immunotherapy.
  • Small molecule inhibitors could offer benefits compared to traditional antibodies, but their development has been slower.
  • Researchers are using a fragment-based approach to discover small molecule inhibitors that bind to PD-L1, with crystal structures of these compounds being analyzed.
View Article and Find Full Text PDF

Myeloid cell leukemia 1 (Mcl-1), an antiapoptotic member of the Bcl-2 family of proteins, has emerged as an attractive target for cancer therapy. Mcl-1 upregulation is often found in many human cancers and is associated with high tumor grade, poor survival, and resistance to chemotherapy. Here, we describe a series of potent and selective tricyclic indole diazepinone Mcl-1 inhibitors that were discovered and further optimized using structure-based design.

View Article and Find Full Text PDF

Recombinant human mast cell chymase (rhChymase) was expressed in secreted form as an active enzyme in the SuperMan5 strain of GlycoSwitch® Pichia pastoris, which is engineered to produce proteins with (Man)5(GlcNAc)2 Asn-linked glycans. Cation exchange and heparin affinity chromatography yielded 5mg of active rhChymase per liter of fermentation medium. Purified rhChymase migrated on SDS-PAGE as a single band of 30 kDa and treatment with peptide N-glycosidase F decreased this to 25 kDa, consistent with the established properties of native human chymase (hChymase).

View Article and Find Full Text PDF

In this study, dissolved Kr and SF6 gases were used to determine various hydrogeological parameters of laboratory columns under water-saturated and partially saturated conditions as a function of the flow velocity. The dissolved gases behaved conservatively in saturated columns but were significantly retarded in unsaturated conditions as a direct function of the Henry's law constant (KH) and the ratio of column pore spaces filled with air and water (Vg/Vw). Lower aqueous diffusion coefficients for SF6 compared to that for Kr also resulted in significant rate-limited mass transport across gas-water interface.

View Article and Find Full Text PDF