Publications by authors named "Evan Opas"

Context: Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH.

Objective: Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism.

Subjects: Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members.

View Article and Find Full Text PDF

Glial cells missing homolog 2 (GCM2) is a transcription factor that is expressed predominately in the pharyngeal pouches and, at later stages, in the developing and mature parathyroid glands. In humans, loss of GCM2 function, either through recessive apomorphic mutations or dominant inhibitor mutations in the human GCM2 gene, leads to isolated hypoparathyroidism. In mice, homozygous disruption of Gcm2 by conventional gene targeting results in parathyroid aplasia and hypoparathyroidism.

View Article and Find Full Text PDF

Prostate cancer (PCa) initially responds to inhibition of androgen receptor (AR) signaling, but inevitably progresses to hormone ablation-resistant disease. Much effort is focused on optimizing this androgen deprivation strategy by improving hormone depletion and AR antagonism. However we found that bicalutamide, a clinically used antiandrogen, actually resembles a selective AR modulator (SARM), as it partially regulates 24% of endogenously 5α-dihydrotestosterone (DHT)-responsive genes in AR(+) MDA-MB-453 breast cancer cells.

View Article and Find Full Text PDF

SAR study of 5-aminooctahydrocyclopentapyrrole-3a-carboxamide scaffold led to identification of several CCR2 antagonists with potent activity in both binding and functional assays. Their cardiovascular safety and pharmacokinetic properties were also evaluated.

View Article and Find Full Text PDF

The inflammatory response associated with the activation of C-C chemokine receptor CCR2 via it's interaction with the monocyte chemoattractant protein-1 (MCP-1, CCL2) has been implicated in many disease states, including rheumatoid arthritis, multiple sclerosis, atherosclerosis, asthma and neuropathic pain. Small molecule antagonists of CCR2 have been efficacious in animal models of inflammatory disease, and have been advanced into clinical development. The necessity to attenuate hERG binding appears to be a common theme for many of the CCR2 antagonist scaffolds appearing in the literature, presumably due the basic hydrophobic motif present in all of these molecules.

View Article and Find Full Text PDF

We have discovered a novel series of 4-azetidinyl-1-aryl-cyclohexanes as CCR2 antagonists. Divergent SAR studies on hCCR2 and hERG activities led to the discovery of compound 8d, which displayed good hCCR2 binding affinity (IC50, 37 nM) and potent functional antagonism (chemotaxis IC50, 30 nM). It presented an IC50 of >50 μM in inhibition of the hERG channel and had no effect on the QTc interval up to 10 mg/kg (i.

View Article and Find Full Text PDF

Novel CCR2 antagonists with a novel 2-aminooctahydrocyclopentalene-3a-carboxamide scaffold were designed. SAR studies led to a series of potent compounds. For example, compound 51 had a good PK profile in both dog and monkey, and exhibited excellent efficacy when dosed orally in an inflammation model in hCCR2 KI mice.

View Article and Find Full Text PDF

As a result of further SAR studies on a piperidinyl piperidine scaffold, we report the discovery of compound 44, a potent, orally bioavailable CCR2 antagonist. While having some in vitro hERG activity, this molecule was clean in an in vivo model of QT prolongation. In addition, it showed excellent efficacy when dosed orally in a transgenic murine model of acute inflammation.

View Article and Find Full Text PDF

A novel series of 4-azetidinyl-1-aryl-cyclohexanes containing indazole or benzoisoxazole moiety have been identified as potent CCR2 antagonists with high selectivity versus hERG.

View Article and Find Full Text PDF

A series of 4-azetidinyl-1-aryl-cyclohexanes as potent CCR2 antagonists with high selectivity over activity for the hERG potassium channel is discovered through divergent SARs of CCR2 and hERG.

View Article and Find Full Text PDF

Selective androgen receptor modulators (SARMs) are androgen receptor (AR) ligands that induce anabolism while having reduced effects in reproductive tissues. In various experimental contexts SARMs fully activate, partially activate, or even antagonize the AR, but how these complex activities translate into tissue selectivity is not known. Here, we probed receptor function using >1000 synthetic AR ligands.

View Article and Find Full Text PDF

Objective: To test the role of ERbeta in the control of estrogen-dependent thermoregulation in rats.

Methods: Test the ability of an ERbeta-selective ligand to suppress the elevation in basal rat tail skin temperature (TST) caused by ovariectomy (OVX).

Results: ERbeta-19 is a tetrahydrofluorenone ERbeta-selective ligand that displaces 0.

View Article and Find Full Text PDF

Objective: Estrogen is the most effective treatment for preventing the vasomotor symptoms in women. The ability of estrogen to control tail skin temperature (TST) in rats is used as an animal model for the studies of estrogens on menopausal hot flushes. Today, we know that estrogen can mediate its actions via the interaction with two different estrogen receptors: ERalpha and ERbeta.

View Article and Find Full Text PDF

Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta).

View Article and Find Full Text PDF

Objective: Develop a rat model for the evaluation of estrogenic agents on estrogen deficiency-induced changes in thermoregulation.

Methods: OVX rats are impaired in thermoregulation which manifests itself as an elevation in basal tail skin temperature (TST) and are less able to respond to temperature changes than intact rats.

Results: Administration of estrogen subcutaneously to estrogen-depleted rats either as depot formulation, biodegradable pellets, or daily injections, suppressed the increased TST.

View Article and Find Full Text PDF