The intestinal lining is protected by a mucous barrier composed predominantly of complex carbohydrates. Gut microbes employ diverse glycoside hydrolases (GHs) to liberate mucosal sugars as a nutrient source to facilitate host colonization. Intensive catabolism of mucosal glycans, however, may contribute to barrier erosion, pathogen encroachment, and inflammation.
View Article and Find Full Text PDFThe structures of bacterial cell surface glycans are remarkably diverse. In spite of this diversity, the general strategies used for their assembly are limited. In one of the major processes, found in both Gram-positive and Gram-negative bacteria, the glycan is polymerized in the cytoplasm on a polyprenol lipid carrier and exported from the cytoplasm by an ATP-binding cassette (ABC) transporter.
View Article and Find Full Text PDFserotype O9a provides a model for export of lipopolysaccharide (LPS) O-antigen polysaccharide (O-PS) via ABC transporters. In O9a biosynthesis, a chain-terminator enzyme, WbdD, caps the nonreducing end of the glycan with a methylphosphate moiety and thereby establishes chain-length distribution. A carbohydrate-binding module (CBM) in the ABC transporter recognizes terminated glycans, ensuring that only mature O-PS is exported and incorporated into LPS.
View Article and Find Full Text PDFO-antigens are cell surface polysaccharides of many Gram-negative pathogens that aid in escaping innate immune responses. A widespread O-antigen biosynthesis mechanism involves the synthesis of the lipid-anchored polymer on the cytosolic face of the inner membrane, followed by transport to the periplasmic side where it is ligated to the lipid A core to complete a lipopolysaccharide molecule. In this pathway, transport to the periplasm is mediated by an ATP-binding cassette (ABC) transporter, called Wzm-Wzt.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
November 2017
Glycoconjugates, molecules that contain sugar components, are major components of the cell envelopes of bacteria and cover much of their exposed surfaces. These molecules are involved in interactions with the surrounding environment and, in pathogens, play critical roles in the interplay with the host immune system. Despite the remarkable diversity in glycoconjugate structures, most are assembled by glycosyltransferases that act on lipid acceptors at the cytosolic membrane.
View Article and Find Full Text PDFExport of the Escherichia coli serotype O9a O-antigenic polysaccharides (O-PS) involves an ATP-binding cassette (ABC) transporter. The process requires a non-reducing terminal residue, which is recognized by a carbohydrate-binding module (CBM) appended to the C terminus of the nucleotide-binding domain of the transporter. Here, we investigate the process in Klebsiella pneumoniae serotype O12 (and Raoultella terrigena ATCC 33257).
View Article and Find Full Text PDFLysogenic bacteriophages may encode enzymes that modify the structures of lipopolysaccharide O-antigen glycans, altering the structure of the bacteriophage receptor and resulting in serotype conversion. This can enhance virulence and has implications for antigenic diversity and vaccine development. Side chain glucosylation is a common modification strategy found in a number of bacterial species.
View Article and Find Full Text PDF