Publications by authors named "Evan M Rehm"

Forest removal for livestock grazing is a striking example of human-caused state change leading to a stable, undesirable invasive grass system that is resistant to restoration efforts. Understanding which factors lead to resilience to the alternative grass state can greatly benefit managers when planning forest restoration. We address how thresholds of grass cover and seed rain might influence forest recovery in a restoration project on Hawai'i Island, USA.

View Article and Find Full Text PDF

Trees can have large effects on soil nutrients in ways that alter succession, particularly in the case of nitrogen-(N)-fixing trees. In Hawai'i, forest restoration relies heavily on use of a native N-fixing tree, Acacia koa (koa), but this species increases soil-available N and likely facilitates competitive dominance of exotic pasture grasses. In contrast, Metrosideros polymorpha ('ōhi'a), the dominant native tree in Hawai'i, is less often planted because it is slow growing; yet it is typically associated with lower soil N and grass biomass, and greater native understory recruitment.

View Article and Find Full Text PDF

The elevations at which tropical treelines occur are believed to represent the point where low mean temperatures limit the growth of upright woody trees. Consequently, tropical treelines are predicted to shift to higher elevations with global warming. However, treelines throughout the tropics have remained stationary despite increasing global mean temperatures.

View Article and Find Full Text PDF

Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions.

View Article and Find Full Text PDF

The elevation of altitudinal treelines is generally believed to occur where low mean temperatures during the growing season limit growth and prevent trees from establishing at higher elevations. Accordingly, treelines should move upslope with increasing global temperatures. Contrary to this prediction, tropical treelines have remained stable over the past several decades despite increasing mean temperatures.

View Article and Find Full Text PDF