This article reports a study of the effects of temperature on chaotropic anion (CA)-induced star-globule shape transitions in acidic water of three-arm star bottlebrushes composed of heterografted poly(ethylene oxide) (PEO) and either poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMAEMA) or poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEAEMA) (the brushes denoted as SMB-11 and -22, respectively). The brush polymers were synthesized by grafting alkyne-end-functionalized PEO and PDMAEMA or PDEAEMA onto an azide-bearing three-arm star backbone polymer using the copper(i)-catalyzed alkyne-azide cycloaddition reaction. Six anions were studied for their effects on the conformations of SMB-11 and -22 in acidic water: super CAs [Fe(CN)6]3- and [Fe(CN)6]4-, moderate CAs PF6- and ClO4-, weak CA I-, and for comparison, kosmotropic anion SO42-.
View Article and Find Full Text PDFMolecular bottlebrushes can exhibit a multitude of distinct conformations under different conditions, and precise control of their morphology can facilitate better use of such materials in potential applications. Herein, we report a study on the effect of buffer anions on the pearl-necklace morphology of linear binary heterografted molecular brushes consisting of pH-responsive poly(2--diethylamino)ethyl methacrylate) (PDEAEMA) with a p of 7.40 and thermoresponsive poly(ethoxydi(ethylene glycol) acrylate) (PDEGEA) with a lower critical solution temperature of 9 °C as side chains in various acidic aqueous buffers at 0 °C.
View Article and Find Full Text PDF