Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with β-(1,4)-linked oligo- and polysaccharides.
View Article and Find Full Text PDFSome glycoside hydrolases have broad specificity for hydrolysis of glycosidic bonds, potentially increasing their functional utility and flexibility in physiological and industrial applications. To deepen the understanding of the structural and evolutionary driving forces underlying specificity patterns in glycoside hydrolase family 5, we quantitatively screened the activity of the catalytic core domains from subfamily 4 (GH5_4) and closely related enzymes on four substrates: lichenan, xylan, mannan, and xyloglucan. Phylogenetic analysis revealed that GH5_4 consists of three major clades, and one of these clades, referred to here as clade 3, displayed average specific activities of 4.
View Article and Find Full Text PDFProtein secretion is a major contributor to Gram-negative bacterial virulence. Type Vb or two-partner secretion (TPS) pathways utilize a membrane bound β-barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis.
View Article and Find Full Text PDF