Publications by authors named "Evan Kroh"

Article Synopsis
  • Epithelial-to-mesenchymal transition (EMT) is crucial in tumor progression and metastasis, and this study aimed to identify the molecular characteristics linked to different EMT states in lung adenocarcinoma.
  • Researchers analyzed 38 cell populations using various techniques (mRNA, miRNA, DNA methylation, and proteomics) and found distinct molecular signatures associated with fully epithelial or mesenchymal cells, as well as hybrid states exhibiting mixed traits.
  • The study highlighted that aggressive hybrid cells showed increased levels of cytoskeletal proteins, which are linked to invasive behavior and could serve as predictive markers for survival in lung adenocarcinoma patients.
View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small (∼22 nucleotide) non-coding RNAs that regulate a myriad of biological processes and are frequently dysregulated in cancer. Cancer-associated microRNAs have been detected in serum and plasma and hold promise as minimally invasive cancer biomarkers, potentially for assessing disease characteristics in patients with metastatic disease that is difficult to biopsy. Here we used miRNA profiling to identify cancer-associated miRNAs that are differentially expressed in sera from patients with metastatic castration resistant prostate cancer (mCRPC) as compared to healthy controls.

View Article and Find Full Text PDF

Circulating, cell-free microRNAs (miRNAs) are promising candidate biomarkers, but optimal conditions for processing blood specimens for miRNA measurement remain to be established. Our previous work showed that the majority of plasma miRNAs are likely blood cell-derived. In the course of profiling lung cancer cases versus healthy controls, we observed a broad increase in circulating miRNA levels in cases compared to controls and that higher miRNA expression correlated with higher platelet and particle counts.

View Article and Find Full Text PDF

Circulating, cell-free microRNAs (miRNAs) hold great promise as a new class of cancer biomarkers due to their surprisingly high stability in plasma, association with disease states, and ease of sensitive measurement. Yet little is known about the origin of circulating miRNAs in either healthy or sick people or what factors influence levels of circulating miRNA biomarkers. Of 79 solid tumor circulating miRNA biomarkers reported in the literature, we found that 58% (46 of 79) are highly expressed in one or more blood cell type.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) circulate in the bloodstream in a highly stable, extracellular form and are being developed as blood-based biomarkers for cancer and other diseases. However, the mechanism underlying their remarkable stability in the RNase-rich environment of blood is not well understood. The current model in the literature posits that circulating miRNAs are protected by encapsulation in membrane-bound vesicles such as exosomes, but this has not been systematically studied.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small (approximately 22 nt) RNAs that play important roles in gene regulatory networks by binding to and repressing the activity of specific target mRNAs. Recent studies have indicated that miRNAs circulate in a stable, cell-free form in the bloodstream and that the abundance of specific miRNAs in plasma or serum can serve as biomarkers of cancer and other diseases. Measurement of circulating miRNAs as biomarkers is associated with some special challenges, including those related to pre-analytic variation and data normalization.

View Article and Find Full Text PDF

Objective: Our objective was to characterize the expression and function of the miR-200 family of microRNAs (miRNA) in ovarian carcinogenesis.

Methods: We used qRT-PCR to examine expression of the miR-200 miRNA family and its predicted targets, the ZEB1 and ZEB2 transcriptional repressors, in primary cultures of normal cells from the surface of the ovary and in a panel of 70 ovarian cancer tissues and 15 ovarian cancer cell lines. We studied the mechanisms of regulation of miR-200 miRNAs and ZEB transcription factors in ovarian cells using 3' UTR luciferase reporters, promoter luciferase reporters and siRNAs.

View Article and Find Full Text PDF

Improved approaches for the detection of common epithelial malignancies are urgently needed to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are small ( approximately 22 nt) regulatory RNAs that are frequently dysregulated in cancer and have shown promise as tissue-based markers for cancer classification and prognostication. We show here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity.

View Article and Find Full Text PDF

We used massively parallel pyrosequencing to discover and characterize microRNAs (miRNAs) expressed in human embryonic stem cells (hESC). Sequencing of small RNA cDNA libraries derived from undifferentiated hESC and from isogenic differentiating cultures yielded a total of 425,505 high-quality sequence reads. A custom data analysis pipeline delineated expression profiles for 191 previously annotated miRNAs, 13 novel miRNAs, and 56 candidate miRNAs.

View Article and Find Full Text PDF