Nonoptimal synonymous codons repress gene expression, but the underlying mechanisms are poorly understood. We and others have previously shown that nonoptimal codons slow translation elongation speeds and thereby trigger messenger RNA (mRNA) degradation. Nevertheless, transcript levels are often insufficient to explain protein levels, suggesting additional mechanisms by which codon usage regulates gene expression.
View Article and Find Full Text PDFBackground: Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC.
Study Design And Methods: Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs.
As part of the ZOOMICS project, we set out to investigate common and diverging metabolic traits in the blood metabolome across various species by taking advantage of recent developments in high-throughput metabolomics. Here we provide the first comparative metabolomics analysis of fresh and stored human ( = 21, 10 males, 11 females), olive baboon ( = 20), and rhesus macaque ( = 20) red blood cells at baseline and upon 42 days of storage under blood bank conditions. The results indicated similarities and differences across species, which ultimately resulted in a differential propensity to undergo morphological alterations and lyse as a function of the duration of refrigerated storage.
View Article and Find Full Text PDFRed blood cells have the special challenge of a large amount of reactive oxygen species (from their substantial iron load and Fenton reactions) combined with the inability to synthesize new gene products. Considerable progress has been made in elucidating the multiple pathways by which red blood cells neutralize reactive oxygen species via NADPH driven redox reactions. However, far less is known about how red blood cells repair the inevitable damage that does occur when reactive oxygen species break through anti-oxidant defenses.
View Article and Find Full Text PDFBackground: Taurine is an antioxidant that is abundant in some common energy drinks. Here we hypothesized that the antioxidant activity of taurine in red blood cells (RBCs) could be leveraged to counteract storage-induced oxidant stress.
Study Design And Methods: Metabolomics analyses were performed on plasma and RBCs from healthy volunteers (n = 4) at baseline and after consumption of a whole can of a common, taurine-rich (1000 mg/serving) energy drink.
Mature red blood cells (RBCs) not only account for ~83% of the total host cells in the human body, but they are also exposed to all body tissues during their circulation in the bloodstream. In addition, RBCs are devoid of de novo protein synthesis capacity and, as such, they represent a perfect model to investigate system-wide alterations of cellular metabolism in the context of aging and age-related oxidant stress without the confounding factor of gene expression. In the present study, we employed ultra-high-pressure liquid chromatography coupled with mass spectrometry (UHPLC-MS)-based metabolomics and proteomics to investigate RBC metabolism across age in male mice (6, 15, and 25 months old).
View Article and Find Full Text PDF