Ethylene-forming enzyme (EFE) is an iron(II)-dependent dioxygenase that fragments 2-oxoglutarate (2OG) to ethylene (from C3 and C4) and 3 equivs of carbon dioxide (from C1, C2, and C5). This major ethylene-forming pathway requires l-arginine as the effector and competes with a minor pathway that merely decarboxylates 2OG to succinate as it oxidatively fragments l-arginine. We previously proposed that ethylene forms in a polar-concerted (Grob-like) fragmentation of a (2-carboxyethyl)carbonatoiron(II) intermediate, formed by the coupling of a C3-C5-derived propion-3-yl radical to a C1-derived carbonate coordinated to the Fe(III) cofactor.
View Article and Find Full Text PDFTET/JBP (ten-eleven translocation/base J binding protein) enzymes are iron(II)- and 2-oxo-glutarate-dependent dioxygenases that are found in all kingdoms of life and oxidize 5-methylpyrimidines on the polynucleotide level. Despite their prevalence, few examples have been biochemically characterized. Among those studied are the metazoan TET enzymes that oxidize 5-methylcytosine in DNA to hydroxy, formyl, and carboxy forms and the euglenozoa JBP dioxygenases that oxidize thymine in the first step of base J biosynthesis.
View Article and Find Full Text PDF