Publications by authors named "Evan J Boote"

The goal of our study was to demonstrate the utility of nanocrystalline gold as an X-ray contrast agent for imaging tumor in living subjects. Even though significant progress has been achieved in this area by researchers, clinical translation remains challenging. Here, we investigated biocompatible gum Arabic stabilized gold nanocrystals (GA-AuNPs) as X-ray contrast agent in tumor bearing mice and dog.

View Article and Find Full Text PDF

Purpose: The purpose of the present study was to explore the utilization of cinnamon-coated gold nanoparticles (Cin-AuNPs) as CT/optical contrast-enhancement agents for detection of cancer cells.

Methods: Cin-AuNPs were synthesized by a "green" procedure, and the detailed characterization was performed by physico-chemical analysis. Cytotoxicity and cellular uptake studies were carried out in normal human fibroblast and cancerous (PC-3 and MCF-7) cells, respectively.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) have exceptional stability against oxidation and therefore will play a significant role in the advancement of clinically useful diagnostic and therapeutic nanomedicines. Despite the huge potential for a new generation of AuNP-based nanomedicinal products, nontoxic AuNP constructs and formulations that can be readily administered site-specifically through the intravenous mode, for diagnostic imaging by computed tomography (CT) or for therapy via various modalities, are still rare. Herein, we report results encompassing: 1) the synthesis and stabilization of AuNPs within the nontoxic phytochemical gum-arabic matrix (GA-AuNPs); 2) detailed in vitro analysis and in vivo pharmacokinetics studies of GA-AuNPs in pigs to gain insight into the organ-specific localization of this new generation of AuNP vector, and 3) X-ray CT contrast measurements of GA-AuNP vectors for potential utility in molecular imaging.

View Article and Find Full Text PDF

Techniques of Doppler ultrasonography (US) have been available to clinicians for nearly 40 years. The Doppler effect as developed by sound propagation in human tissues and with the velocities observed for the human vasculature produces shifts in the frequencies of returning echo signals. These signals can be processed in a manner that allows the observer to determine the condition of the blood flow.

View Article and Find Full Text PDF