Publications by authors named "Evan Hatakeyama"

Technologies for removal of mercury from produced water and hydrocarbon phases are desired by oil and gas production facilities, oil refineries, and petrochemical plants. Herein, we synthesize and demonstrate the efficacy of an amphiphilic, thiol-abundant (11.8 wt % S, as thiol) polymer nanogel that can remove environmentally relevant mercury species from both produced water and the liquid hydrocarbon.

View Article and Find Full Text PDF

Pore functionalized membranes with appropriate ion exchange/chelate groups allow toxic metal sorption under convective flow conditions. This study explores the sorption capacity of ionic mercury in a polyvinylidene fluoride-poly(acrylic acid) (PVDFs-PAA) functionalized membrane immobilized with cysteamine (MEA). Two methods of MEA immobilization to the PVDF-PAA membrane have been assessed: (i) ion exchange (IE) and (ii) carbodiimide cross-linker chemistry using 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDC) and -hydroxysuccinimide (NHS), known as EDC/NHS coupling.

View Article and Find Full Text PDF

This study demonstrates a three-step process consisting of primary pre-filtration followed by ultrafiltration (UF) and adsorption with thiol-functionalized microfiltration membranes (thiol membranes) to effectively remove mercury sulfide nanoparticles (HgS NPs) and dissolved mercury (Hg) from wastewater. Thiol membranes were synthesized by incorporating either cysteine (Cys) or cysteamine (CysM) precursors onto polyacrylic acid (PAA)-functionalized polyvinylidene fluoride membranes. Carbodiimide chemistry was used to cross-link thiol (-SH) groups on membranes for metal adsorption.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how steric hindrance and charge interactions affect ionic transport in reduced graphene oxide (rGO) membranes compared to commercial ones, using a mix of experimental data and the Nernst-Planck equation.
  • rGO membranes showed varying salt retention rates (7%-70%) based on ion type, with swelling in water reducing steric hindrance and impacting their effectiveness for salt exclusion.
  • The research demonstrated that rGO membranes can selectively remove organic impurities from high TDS water, achieving 90% retention of PFOA, making them suitable for treating contaminated water.
View Article and Find Full Text PDF

Mercury (Hg) speciation can affect its removal efficiency by adsorbents. This study assessed the removal of dissolved inorganic Hg(II) species (Hg(II)*), β-HgS nanoparticles (HgS NP), and Hg complexed with dissolved organic matter (Hg-DOM) by three sorbents: activated carbon (AC), sulfur-impregnated activated carbon (SAC), and organoclay (OC). The effect of ionic composition, solution ionic strength, and natural organic matter (NOM) concentration on the removal of each Hg species was also evaluated.

View Article and Find Full Text PDF

Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (FeO nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: