Publications by authors named "Evan D Crotty"

Maximal sprinting in humans requires the contribution of various muscle-tendon units (MTUs) and joints to maximize performance. The plantar flexor MTU and ankle joint are of particular importance due to their role in applying force to the ground. This narrative review examines the contribution of the ankle joint and plantar flexor MTUs across the phases of sprinting (start, acceleration, and maximum velocity), alongside the musculotendinous properties that contribute to improved plantar flexor MTU performance.

View Article and Find Full Text PDF

Introduction: Comparison of the neuromuscular performance of different athlete types may give insight into the in vivo variability of these measures and their underpinning mechanisms. The study aims to compare the neuromuscular function of the plantar flexors of sprinters and physically active individuals to assess any differences in explosive force performance.

Methods: Neuromuscular performance of a group of sprinters (highly trained/national level, n = 12; elite/international level, n = 2) and physically active individuals ( n = 14) were assessed during involuntary, explosive, and maximum voluntary isometric plantar flexions, across different muscle-tendon unit (MTU) lengths (10° plantarflexion, 0° (anatomical zero/neutral), and 10° dorsiflexion).

View Article and Find Full Text PDF

The reliability of mechanical measures can be impacted by the protocol used, including factors such as joint angle and the sex of participants. This study aimed to determine the inter-day reliability of plantar flexor mechanical measures across ankle joint angles and contraction types and consider potential sex-specific effects. 14 physically-active individuals participated in two identical measurement sessions involving involuntary and voluntary plantar flexor contractions, at three ankle angles (10° plantarflexion (PF), 0° (anatomical zero (AZ)), and 10° dorsiflexion (DF)), while torque and surface EMG were recorded.

View Article and Find Full Text PDF

. Accurate identification of surface electromyography (EMG) muscle onset is vital when examining short temporal parameters such as electromechanical delay. The visual method is considered the 'gold standard' in onset detection.

View Article and Find Full Text PDF

In the sprint start, a defined sequence of distinct response delays occurs before the athlete produces a movement response. Excitation of lower limb muscles occurs prior to force production against the blocks, culminating in a movement response. The time delay between muscle excitation and movement, electromechanical delay (EMD), is considered to influence sprint start response time (SSRT).

View Article and Find Full Text PDF