Publications by authors named "Evan Curtis Johnson"

Cooperative cross-feeding, a resource-exchange mutualism between microbes, is ubiquitous; however, models suggest it should be susceptible to cheating. Recent work suggested two novel mechanisms that could allow cross-feeders to exclude cheaters, even in the absence of tight coupling between cooperative organisms. The first is pattern formation, where cross-feeders form regular patterns so that their resources are separated and cheaters cannot obtain both.

View Article and Find Full Text PDF

Mutualisms are ubiquitous, but models predict they should be susceptible to cheating. Resolving this paradox has become relevant to synthetic ecology: cooperative cross-feeding, a nutrient-exchange mutualism, has been proposed to stabilize microbial consortia. Previous attempts to understand how cross-feeders remain robust to non-producing cheaters have relied on complex behaviour (e.

View Article and Find Full Text PDF

The ubiquity of cooperative cross-feeding (a resource-exchange mutualism) raises two related questions: Why is cross-feeding favored over self-sufficiency, and how are cross-feeders protected from non-producing cheaters? The Black Queen Hypothesis suggests that if leaky resources are costly, then there should be selection for either gene loss or self-sufficiency, but selection against mutualistic inter-dependency. Localized interactions have been shown to protect mutualists against cheaters, though their effects in the presence of self-sufficient organisms are not well understood. Here we develop a stochastic spatial model to examine how spatial effects alter the predictions of the Black Queen Hypothesis.

View Article and Find Full Text PDF