The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2), which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival.
View Article and Find Full Text PDFMitral regurgitation is a common valvular disorder found in the general population with varying degrees of severity. The symptoms of this disorder correspond to the severity of regurgitation as well as its associated complications such as arrhythmias. Suspicion of mitral regurgitation is based on physical exam findings with diagnosis generally requiring confirmatory findings on transthoracic echocardiogram.
View Article and Find Full Text PDFMany neurons in the adult central nervous system, including retinal ganglion cells (RGCs), degenerate and die after injury. Early axon protein and organelle trafficking failure is a key component in many neurodegenerative disorders yet changes to axoplasmic transport in disease models have not been quantified. We analyzed early changes in the protein 'transportome' from RGC somas to their axons after optic nerve injury and identified transport failure of an anterograde motor protein Kif5a early in RGC degeneration.
View Article and Find Full Text PDFLoss of retinal ganglion cells (RGCs) in optic neuropathies results in permanent partial or complete blindness. Myocyte enhancer factor 2 (MEF2) transcription factors have been shown to play a pivotal role in neuronal systems, and in particular MEF2A knockout was shown to enhance RGC survival after optic nerve crush injury. Here we expanded these prior data to study bi-allelic, tri-allelic and heterozygous allele deletion.
View Article and Find Full Text PDFMelanopsin, an atypical vertebrate visual pigment, mediates non-image-forming light responses including circadian photoentrainment and pupillary light reflexes and contrast detection for image formation. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells are characterized by sluggish activation and deactivation of their light responses. The molecular determinants of mouse melanopsin's deactivation have been characterized (i.
View Article and Find Full Text PDFIn diseases such as glaucoma, the failure of retinal ganglion cell (RGC) neurons to survive or regenerate their optic nerve axons underlies partial and, in some cases, complete vision loss. Optic nerve crush (ONC) serves as a useful model not only of traumatic optic neuropathy but also of glaucomatous injury, as it similarly induces RGC cell death and degeneration. Intravitreal injection of adeno-associated virus serotype 2 (AAV2) has been shown to specifically and efficiently transduce RGCs and has thus been proposed as an effective means of gene delivery for the treatment of glaucoma.
View Article and Find Full Text PDFDuring development, newly-differentiated neurons undergo several morphological and physiological changes to become functional, mature neurons. Physiologic maturation of neuronal cells derived from isolated stem or progenitor cells may provide insight into maturation in vivo but is not well studied. As a step towards understanding how neuronal maturation is regulated, we studied the developmental switch of response to the neurotransmitter GABA, from excitatory depolarization to inhibitory hyperpolarization.
View Article and Find Full Text PDFFollowing ocular trauma or in diseases such as glaucoma, irreversible vision loss is due to the death of retinal ganglion cell (RGC) neurons. Although strategies to replace these lost cells include stem cell replacement therapy, few differentiated stem cells turn into RGC-like neurons. Understanding the regulatory mechanisms of RGC differentiation in vivo may improve outcomes of cell transplantation by directing the fate of undifferentiated cells toward mature RGCs.
View Article and Find Full Text PDFcAMP signaling is known to be critical in neuronal survival and axon growth. Increasingly the subcellular compartmentation of cAMP signaling has been appreciated, but outside of dendritic synaptic regulation, few cAMP compartments have been defined in terms of molecular composition or function in neurons. Specificity in cAMP signaling is conferred in large part by A-kinase anchoring proteins (AKAPs) that localize protein kinase A and other signaling enzymes to discrete intracellular compartments.
View Article and Find Full Text PDFNeurotrophic factor and cAMP-dependent signaling promote the survival and neurite outgrowth of retinal ganglion cells (RGCs) after injury. However, the mechanisms conferring neuroprotection and neuroregeneration downstream to these signals are unclear. We now reveal that the scaffold protein muscle A-kinase anchoring protein-α (mAKAPα) is required for the survival and axon growth of cultured primary RGCs.
View Article and Find Full Text PDFIn mammals, the expression of the unusual visual pigment, melanopsin, is restricted to a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs), whose signaling regulate numerous non-visual functions including sleep, circadian photoentrainment and pupillary constriction. IpRGCs exhibit attenuated electrical responses following sequential and prolonged light exposures indicative of an adaptational response. The molecular mechanisms underlying deactivation and adaptation in ipRGCs however, have yet to be fully elucidated.
View Article and Find Full Text PDFVision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane Grus americana (Gruiformes, Gruidae), which is one of only two North American crane species. It is a large, long-lived bird in which UV sensitivity might be reduced by chromatic aberration and entrance of UV radiation into the eye could be detrimental to retinal tissues.
View Article and Find Full Text PDFLight-activated opsins undergo carboxy-terminal phosphorylation, which contributes to the deactivation of their photoresponse. The photopigment melanopsin possesses an unusually long carboxy tail containing 37 serine and threonine sites that are potential sites for phosphorylation by a G-protein dependent kinase (GRK). Here, we show that a small cluster of six to seven sites is sufficient for deactivation of light-activated mouse melanopsin.
View Article and Find Full Text PDFIn our previous work, we found that feeding Lactobacillus johnsonii to BioBreeding diabetes-prone (BBDP) rats decreased the incidence of diabetes development. The aim of this study was to investigate host pathways affected by L. johnsonii, with specific focus on the rate-limiting enzyme of tryptophan catabolism, indoleamine 2,3-dioxygenase (IDO).
View Article and Find Full Text PDFOpsin proteins are essential molecules in mediating the ability of animals to detect and use light for diverse biological functions. Therefore, understanding the evolutionary history of opsins is key to understanding the evolution of light detection and photoreception in animals. As genomic data have appeared and rapidly expanded in quantity, it has become possible to analyse opsins that functionally and histologically are less well characterized, and thus to examine opsin evolution strictly from a genetic perspective.
View Article and Find Full Text PDFEur J Cardiothorac Surg
September 2002
Mucoepidermoid carcinoma is a rare type of tumor of bronchial glands. We describe an unusual presentation of mucoepidermoid carcinoma in a 19-year-old man with atypical pneumonia, deep vein thromboses and recurrent pulmonary embolism, which, to the best of our knowledge has not previously been reported.
View Article and Find Full Text PDF