Introduction: Gum arabic-coated radioactive gold nanoparticles (GA-(198)AuNPs) offer several advantages over traditional brachytherapy in the treatment of prostate cancer, including homogenous dose distribution and higher dose-rate irradiation. Our objective was to determine the short-term safety profile of GA-(198)AuNPs injected intralesionally. We proposed that a single treatment of GA-(198)AuNPs would be safe with minimal-to-no evidence of systemic or local toxicity.
View Article and Find Full Text PDFThe goal of our study was to demonstrate the utility of nanocrystalline gold as an X-ray contrast agent for imaging tumor in living subjects. Even though significant progress has been achieved in this area by researchers, clinical translation remains challenging. Here, we investigated biocompatible gum Arabic stabilized gold nanocrystals (GA-AuNPs) as X-ray contrast agent in tumor bearing mice and dog.
View Article and Find Full Text PDFSystemic delivery of therapeutic agents to solid tumors is hindered by vascular and interstitial barriers. We hypothesized that prostate tumor specific epigallocatechin-gallate (EGCg) functionalized radioactive gold nanoparticles, when delivered intratumorally (IT), would circumvent transport barriers, resulting in targeted delivery of therapeutic payloads. The results described herein support our hypothesis.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
June 2012
The development of new treatment modalities that offer clinicians the ability to reduce sizes of tumor prior to surgical resection or to achieve complete ablation without surgery would be a significant medical breakthrough in the overall care and treatment of prostate cancer patients. The goal of our investigation is aimed at validating the hypothesis that Gum Arabic-functionalized radioactive gold nanoparticles (GA-(198) AuNP) have high affinity toward tumor vasculature. We hypothesized further that intratumoral delivery of the GA-(198) AuNP agent within prostate tumor will allow optimal therapeutic payload that will significantly or completely ablate tumor without side effects, in patients with hormone refractory prostate cancer.
View Article and Find Full Text PDFPurpose: The purpose of the present study was to explore the utilization of cinnamon-coated gold nanoparticles (Cin-AuNPs) as CT/optical contrast-enhancement agents for detection of cancer cells.
Methods: Cin-AuNPs were synthesized by a "green" procedure, and the detailed characterization was performed by physico-chemical analysis. Cytotoxicity and cellular uptake studies were carried out in normal human fibroblast and cancerous (PC-3 and MCF-7) cells, respectively.
The presence of circulating tumor cells in the bloodstream has been correlated with disease state in cancer patients. While we have successfully exploited melanin, the natural light absorber in melanoma cells, to induce photoacoustic waves for tumor cell detection, non-pigmented tumor cells do not have sufficient optical contrast for such a method. For example, breast, prostate and lung cancers lack intrinsic pigmentation and thus do not generate photoacoustic waves.
View Article and Find Full Text PDFDevelopment of cancer receptor-specific gold nanoparticles will allow efficient targeting/optimum retention of engineered gold nanoparticles within tumors and thus provide synergistic advantages in oncology as it relates to molecular imaging and therapy. Bombesin (BBN) peptides have demonstrated high affinity toward gastrin-releasing peptide (GRP) receptors in vivo that are overexpressed in prostate, breast, and small-cell lung carcinoma. We have synthesized a library of GRP receptor-avid nanoplatforms by conjugating gold nanoparticles (AuNPs) with BBN peptides.
View Article and Find Full Text PDFRationale And Objectives: The purpose of this study was to demonstrate the application of gold nanoparticles (AuNP) as a contrast agent for a clinical x-ray computed tomography (CT) system using a phantom and juvenile swine.
Materials And Methods: A tissue-mimicking phantom with spherical inclusions containing known concentrations of Au was scanned. Swine were injected with gum Arabic stabilized Au nanoparticles (GA-AuNP), up to 85 mg kg(-1) body weight.
Unlabelled: Biocompatibility studies and cancer therapeutic applications of nanoparticulate beta-emitting gold-198 (198Au; beta(max) = 0.96 MeV; half-life of 2.7 days) are described.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) have exceptional stability against oxidation and therefore will play a significant role in the advancement of clinically useful diagnostic and therapeutic nanomedicines. Despite the huge potential for a new generation of AuNP-based nanomedicinal products, nontoxic AuNP constructs and formulations that can be readily administered site-specifically through the intravenous mode, for diagnostic imaging by computed tomography (CT) or for therapy via various modalities, are still rare. Herein, we report results encompassing: 1) the synthesis and stabilization of AuNPs within the nontoxic phytochemical gum-arabic matrix (GA-AuNPs); 2) detailed in vitro analysis and in vivo pharmacokinetics studies of GA-AuNPs in pigs to gain insight into the organ-specific localization of this new generation of AuNP vector, and 3) X-ray CT contrast measurements of GA-AuNP vectors for potential utility in molecular imaging.
View Article and Find Full Text PDFNanocompatible chemistry which utilizes a novel nontoxic phosphino amino acid as a reducing agent has resulted in the development of therapeutically useful gold nanoparticles under biologically benign media. Stabilization of gold nanoparticles by the edible gum arabic matrix has provided an effective pathway toward in vivo stable target-specific gold nanoparticles.
View Article and Find Full Text PDFTechniques of Doppler ultrasonography (US) have been available to clinicians for nearly 40 years. The Doppler effect as developed by sound propagation in human tissues and with the velocities observed for the human vasculature produces shifts in the frequencies of returning echo signals. These signals can be processed in a manner that allows the observer to determine the condition of the blood flow.
View Article and Find Full Text PDF