Background: Current cancer immunotherapies have made tremendous impacts but generally lack high response rates, especially in ovarian cancer. New therapies are needed to provide increased benefits. One understudied approach is to target the large population of immunosuppressive tumor-associated macrophages (TAMs).
View Article and Find Full Text PDFThis work establishes that Kupffer cell release of platelet activating factor (PAF), a lipidic molecule with pro-inflammatory and vasoactive signaling properties, dictates dose-limiting siRNA nanocarrier-associated toxicities. High-dose intravenous injection of siRNA-polymer nano-polyplexes (si-NPs) elicited acute, shock-like symptoms in mice, associated with increased plasma PAF and consequently reduced PAF acetylhydrolase (PAF-AH) activity. These symptoms were completely prevented by prophylactic PAF receptor inhibition or Kupffer cell depletion.
View Article and Find Full Text PDFBackground: New treatment options for ovarian cancer are urgently required. Tumor-associated macrophages (TAMs) are an attractive target for therapy; repolarizing TAMs from M2 (pro-tumor) to M1 (anti-tumor) phenotypes represents an important therapeutic goal. We have previously shown that upregulated NF-kappaB (NF-κB) signaling in macrophages promotes M1 polarization, but effects in the context of ovarian cancer are unknown.
View Article and Find Full Text PDFBackground: Helper T cell activity is dysregulated in a number of diseases including those associated with rheumatic autoimmunity. Treatment options are limited and usually consist of systemic immune suppression, resulting in undesirable consequences from compromised immunity. Hedgehog (Hh) signaling has been implicated in the activation of T cells and the formation of the immune synapse, but remains understudied in the context of autoimmunity.
View Article and Find Full Text PDF"Smart", dual pH-responsive, and endosomolytic polymeric nanoparticles have demonstrated great potential for localized drug delivery, especially for siRNA delivery to the cytoplasm of cells. However, targeted delivery to a specific cell phenotype requires an additional level of functionality. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a highly selective bioconjugation reaction that can be performed in conjunction with other polymerization techniques without adversely affecting reaction kinetics, but there exists some concern for residual copper causing cytotoxicity.
View Article and Find Full Text PDF