Pythia's Oasis is a newly discovered seafloor seep on the Central Oregon segment of the Cascadia Subduction Zone, where focused venting emits highly altered fluids ~9°C above the background temperature. The seep fluid chemistry is unique for Cascadia and includes extreme enrichment of boron and lithium and depletion of chloride, potassium, and magnesium. We conclude that the fluids are sourced from pore water compaction and mineral dehydration reactions with minimum source temperatures of 150° to 250°C, placing the source at or near the plate boundary offshore Central Oregon.
View Article and Find Full Text PDFSlow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface.
View Article and Find Full Text PDFThe oceanic magnesium cycle is largely controlled by continental weathering and marine authigenic mineral formation, which are intimately linked to long-term climate. Uncertainties in the magnesium cycle propagate into other chemical budgets, and into interpretations of paleo-oceanographic reconstructions of seawater δMg and Mg/Ca ratios. Here, we produce a detailed global map of the flux of dissolved magnesium from the ocean into deeper marine sediments (greater than ∼1 meter below seafloor), and quantify the global flux and associated isotopic fractionation.
View Article and Find Full Text PDF