Coastal southeast Florida experiences a wide range of aerosol conditions, including African dust, biomass burning (BB) aerosols, as well as sea salt and other locally-emitted aerosols. These aerosols are important sources of cloud condensation nuclei (CCN), which play an essential role in governing cloud radiative properties. As marine environments dominate the surface of Earth, CCN characteristics in coastal southeast Florida have broad implications for other regions with the added feature that this site is perturbed by both natural and anthropogenic emissions.
View Article and Find Full Text PDFThe MONterey Aerosol Research Campaign (MONARC) in May-June 2019 featured 14 repeated identical flights off the California coast over the open ocean at the same time each flight day. The objective of this study is to use MONARC data along with machine learning analysis to evaluate relationships between both supermicrometer sea salt aerosol number (N) and volume (V) concentrations and wind speed, wind direction, sea surface temperature (SST), ambient temperature (T), turbulent kinetic energy (TKE), relative humidity (RH), marine boundary layer (MBL) depth, and drizzle rate. Selected findings from this study include the following: (i) Near surface (<60 m) N and V concentration ranges were 0.
View Article and Find Full Text PDF