Publications by authors named "Eva Wisniewski"

ARHGAP25, a crucial molecule in immunological processes, serves as a Rac-specific GTPase-activating protein. Its role in cell migration and phagocyte functions, affecting the outcome of complex immunological diseases such as rheumatoid arthritis, renders it a promising target for drug research. Despite its importance, our knowledge of its intracellular interactions is still limited.

View Article and Find Full Text PDF

Molecular interactions between anorexigenic leptin and orexigenic endocannabinoids, although of great metabolic significance, are not well understood. We report here that hypothalamic STAT3 signaling in mice, initiated by physiological elevations of leptin, is diminished by agonists of the cannabinoid receptor 1 (CBR). Measurement of STAT3 activation by semi-automated confocal microscopy in cultured neurons revealed that this CBR-mediated inhibition requires both T cell protein tyrosine phosphatase (TC-PTP) and β-arrestin1 but is independent of changes in cAMP.

View Article and Find Full Text PDF

ARHGAP25, a RAC-specific GTPase activating protein (GAP), is an essential regulator of phagocyte effector functions such as phagocytosis, superoxide production, and transendothelial migration. Furthermore, its complex role in tumor behavior has recently been recognized. We previously demonstrated that phosphorylation of serine 363 in ARHGAP25 regulates hematopoietic stem cells and progenitor cells in mouse bone marrow.

View Article and Find Full Text PDF

The G protein-coupled type 1 cannabinoid receptor (CBR) mediates virtually all classic cannabinoid effects, and both its agonists and antagonists hold major therapeutic potential. Heterologous expression of receptors is vital for pharmacological research, however, overexpression of these proteins may fundamentally alter their localization pattern, change the signalling partner preference and may also spark artificial clustering. Additionally, recombinant CBRs are prone to intense proteasomal degradation, which may necessitate substantial modifications, such as N-terminal truncation or signal sequence insertion, for acceptable cell surface expression.

View Article and Find Full Text PDF

We have previously demonstrated in H295R adrenocortical cells that the Ca-dependent production of mitochondrial cAMP (mt-cAMP) by the matrix soluble adenylyl cyclase (sAC; encoded by ) is associated with enhanced aldosterone production. Here, we examined whether mitochondrial sAC and mt-cAMP fine tune mitochondrial Ca metabolism to support steroidogenesis. Reduction of mt-cAMP formation resulted in decelerated mitochondrial Ca accumulation in intact cells during K-induced Ca signalling and also in permeabilized cells exposed to elevated perimitochondrial [Ca].

View Article and Find Full Text PDF

Decreased luminal endoplasmic reticulum (ER) Ca concentration triggers oligomerization and clustering of the ER Ca sensor STIM1 to promote its association with plasma membrane Orai1 Ca channels leading to increased Ca influx. A key step in STIM1 activation is the release of its SOAR domain from an intramolecular clamp formed with the STIM1 first coiled-coil (CC1) region. Using a truncated STIM1(1-343) molecule that captures or releases the isolated SOAR domain depending on luminal ER Ca concentrations, we analyzed the early molecular events that control the intramolecular clamp formed between the CC1 and SOAR domains.

View Article and Find Full Text PDF

ARHGAP25 is a Rac-specific GTPase-activating protein that is expressed primarily in hematopoietic cells. The involvement of ARHGAP25 in regulating the recruitment of leukocytes to inflammatory sites was investigated in genetically modified mice. Using intravital microscopy, we show that Arhgap25 deficiency affects all steps of leukocyte recruitment with a predominant enhancement of transendothelial migration of neutrophilic granulocytes.

View Article and Find Full Text PDF

Protein phosphorylation is a central mechanism of signal transduction that both positively and negatively regulates protein function. Large-scale studies of the dynamic phosphorylation states of cell signaling systems have been applied extensively in cell lines and whole tissues to reveal critical regulatory networks, and candidate-based evaluations of phosphorylation in rare cell populations have also been informative. However, application of comprehensive profiling technologies to adult stem cell and progenitor populations has been challenging, due in large part to the scarcity of such cells in adult tissues.

View Article and Find Full Text PDF

Phospholipase C (PLC)-mediated hydrolysis of the limited pool of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] requires replenishment from a larger pool of phosphatidylinositol (PtdIns) via sequential phosphorylation by PtdIns 4-kinases and phosphatidylinositol 4-phosphate (PtdIns4P) 5-kinases. Since PtdIns is synthesized in the endoplasmic reticulum (ER) and PtdIns(4,5)P2 is generated in the PM, it has been postulated that PtdIns transfer proteins (PITPs) provide the means for this lipid transfer function. Recent studies identified the large PITP protein, Nir2 as important for PtdIns transfer from the ER to the PM.

View Article and Find Full Text PDF

Sustained agonist-induced production of the second messengers InsP3 and diacylglycerol requires steady delivery of phosphatidylinositol (PtdIns) from its site of synthesis in the ER to the plasma membrane (PM) to maintain PtdIns(4,5)P2 levels. Similarly, phosphatidic acid (PtdOH), generated from diacylglycerol in the PM, has to reach the ER for PtdIns resynthesis. Here, we show that the Drosophila RdgB homolog, Nir2, a presumed PtdIns transfer protein, not only transfers PtdIns from the ER to the PM but also transfers PtdOH to the opposite direction at ER-PM contact sites.

View Article and Find Full Text PDF

Polymicrogyria (PMG) is a structural brain abnormality involving the cerebral cortex that results from impaired neuronal migration and although several genes have been implicated, many cases remain unsolved. In this study, exome sequencing in a family where three fetuses had all been diagnosed with PMG and cerebellar hypoplasia allowed us to identify regions of the genome for which both chromosomes were shared identical-by-descent, reducing the search space for causative variants to 8.6% of the genome.

View Article and Find Full Text PDF

Phosphoinositides are a class of phospholipids generated by the action of phosphoinositide kinases with key regulatory functions in eukaryotic cells. Here, we present the atomic structure of phosphatidylinositol 4-kinase type IIα (PI4K IIα), in complex with ATP solved by X-ray crystallography at 2.8 Å resolution.

View Article and Find Full Text PDF