Publications by authors named "Eva Weicken"

Article Synopsis
  • Recent advancements in large language models (LLMs) present significant opportunities for improving the management of multiple sclerosis (MS), particularly in producing and analyzing human-like text.
  • While AI integration into medical imaging and disease prognosis has gained attention, the specific application of LLMs in MS management is still largely uncharted territory.
  • Potential uses of LLMs include enhancing clinical decision-making for therapy selection, utilizing real-world data for research, and creating personalized educational resources for healthcare professionals and patients with MS.
View Article and Find Full Text PDF
Article Synopsis
  • The Task Force has developed a flowchart tool to assess fall risk in older adults living in the community, based on expert opinions and evidence.
  • The tool categorizes individuals into three different risk groups and suggests tailored preventive measures for each one.
  • The commentary discusses the tool’s design, validation, usability, and its potential effects, aiming to influence future research in this area.
View Article and Find Full Text PDF

While machine learning is currently transforming the field of histopathology, the domain lacks a comprehensive evaluation of state-of-the-art models based on essential but complementary quality requirements beyond a mere classification accuracy. In order to fill this gap, we developed a new methodology to extensively evaluate a wide range of classification models, including recent vision transformers, and convolutional neural networks such as: ConvNeXt, ResNet (BiT), Inception, ViT and Swin transformer, with and without supervised or self-supervised pretraining. We thoroughly tested the models on five widely used histopathology datasets containing whole slide images of breast, gastric, and colorectal cancer and developed a novel approach using an image-to-image translation model to assess the robustness of a cancer classification model against stain variations.

View Article and Find Full Text PDF

Digital health technologies can help tackle challenges in global public health. Digital and AI-for-Health Challenges, controlled events whose goal is to generate solutions to a given problem in a defined period of time, are one way of catalysing innovation. This article proposes an expanded investment framework for Global Health AI and digitalhealth Innovation that goes beyond traditional factors such as return on investment.

View Article and Find Full Text PDF

Developers proposing new machine learning for health (ML4H) tools often pledge to match or even surpass the performance of existing tools, yet the reality is usually more complicated. Reliable deployment of ML4H to the real world is challenging as examples from diabetic retinopathy or Covid-19 screening show. We envision an integrated framework of algorithm auditing and quality control that provides a path towards the effective and reliable application of ML systems in healthcare.

View Article and Find Full Text PDF

Objectives: To date, many artificial intelligence (AI) systems have been developed in healthcare, but adoption has been limited. This may be due to inappropriate or incomplete evaluation and a lack of internationally recognised AI standards on evaluation. To have confidence in the generalisability of AI systems in healthcare and to enable their integration into workflows, there is a need for a practical yet comprehensive instrument to assess the translational aspects of the available AI systems.

View Article and Find Full Text PDF