A series of antioxidants was designed and synthesized based on conjugation of the hepatoprotective flavonolignan silybin with l-ascorbic acid, trolox alcohol or tyrosol via a C aliphatic linker. These hybrid molecules were prepared from 12-vinyl dodecanedioate-23-O-silybin using the enzymatic regioselective acylation procedure with Novozym 435 (lipase B) or with lipase PS. Voltammetric analyses showed that the silybin-ascorbic acid conjugate exhibited excellent electron donating ability, in comparison to the other conjugates.
View Article and Find Full Text PDFA series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C₅- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C₂), malonic (C₃), succinic (C₄) and maleic (C₄) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length.
View Article and Find Full Text PDFA panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22) of silychristin was accomplished by lipase PS (Pseudomonas cepacia) immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/ n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B.
View Article and Find Full Text PDFDivalent or multivalent molecules often show enhanced biological activity relative to the simple monomeric units. Here we present enzymatically and chemically prepared dimers of the flavonolignans silybin and 2,3-dehydrosilybin. Their electrochemical behavior was studied by in situ and ex situ square wave voltammetry.
View Article and Find Full Text PDFChitosan is a linear polysaccharide with a good biodegradability, biocompatibility, and no toxicity, which provide it with huge potential for future development. The chitosan molecule appears to be a suitable polymeric complex for many biomedical applications. This review gathers current findings on the antibacterial, antifungal, antitumour and antioxidant activities of chitosan derivatives and concurs with our previous review presenting data collected up to 2008.
View Article and Find Full Text PDFA series of new isoniazid hydrazones was synthesized by two procedures. In the first isoniazid was activated with diethoxymethyl acetate and condensed with the appropriate anilines. Alternatively, substituted anilines were activated by diethoxymethyl acetate and subsequently condensed with isoniazid.
View Article and Find Full Text PDFSeveral new fluorine-containing hydrazones were synthesized and screened for their in vitro antimycobacterial activity. Nine of these derivatives have shown a remarkable activity against MDR-TB strain with MIC 0.5 μg/mL and high value of selectivity index (SI).
View Article and Find Full Text PDFA series of 27 salicylanilide-based carbamates was prepared as a part of our ongoing search for new antituberculosis drugs. These compounds exhibited very good in vitro activity against Mycobacterium tuberculosis, Mycobacterium kansasii and Mycobacterium avium and, in particular, against five multidrug-resistant strains, with MIC values between 0.5-2 micromol/L.
View Article and Find Full Text PDF