Publications by authors named "Eva Top"

Article Synopsis
  • Wastewater surveillance has become an important tool for monitoring infectious diseases, particularly in bridging gaps between underserved communities and urban areas.
  • This study focused on detecting SARS-CoV-2 in wastewater from rural Idaho communities to predict COVID-19 outbreaks, using a sophisticated model that analyzed wastewater data.
  • The findings indicated that the model could accurately forecast outbreaks with a lead time of up to 11 days, suggesting that wastewater-based epidemiology can effectively enhance public health responses in rural settings.
View Article and Find Full Text PDF

is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species.

View Article and Find Full Text PDF

Plasmids play a major role in rapid adaptation of bacteria by facilitating horizontal transfer of diverse genes, most notably those conferring antibiotic resistance. While most plasmids that replicate in a broad range of bacteria also persist well in diverse hosts, there are exceptions that are poorly understood. We investigated why a broad-host range plasmid, pBP136, originally found in clinical isolates, quickly became extinct in laboratory populations.

View Article and Find Full Text PDF

Wastewater can play a vital role in infectious disease surveillance, especially in underserved communities where it can reduce the equity gap to larger municipalities. However, using wastewater surveillance in a predictive manner remains a challenge. We tested if detecting SARS-CoV-2 in wastewater can predict outbreaks in rural communities.

View Article and Find Full Text PDF

As mobile genetic elements, plasmids are central for our understanding of antimicrobial resistance spread in microbial communities. Plasmids can have varying fitness effects on their host bacteria, which will markedly impact their role as antimicrobial resistance vectors. Using a plasmid population model, we first show that beneficial plasmids interact with a higher number of hosts than costly plasmids when embedded in a community with multiple hosts and plasmids.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how horizontal gene transfer (HGT) affects the evolution of antibiotic resistance genes across different bacterial species.
  • Researchers developed a framework to analyze the evolutionary impact of switching hosts and applied it to a common antibiotic resistance gene found on plasmids.
  • Findings indicate that if the adaptive landscapes of the gene in different species are similar, evolutionary improvements in one species can benefit others, allowing for shared adaptation within a bacterial community.
View Article and Find Full Text PDF

Plasmids are mobile genetic elements found in many clades of Archaea and Bacteria. They drive horizontal gene transfer, impacting ecological and evolutionary processes within microbial communities, and hold substantial importance in human health and biotechnology. To support plasmid research and provide scientists with data of an unprecedented diversity of plasmid sequences, we introduce the IMG/PR database, a new resource encompassing 699 973 plasmid sequences derived from genomes, metagenomes and metatranscriptomes.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) poses a substantial threat to human health. The widespread prevalence of AMR is, in part, due to the horizontal transfer of antibiotic resistance genes (ARGs), typically mediated by plasmids. Many of the plasmid-mediated resistance genes in pathogens originate from environmental, animal or human habitats.

View Article and Find Full Text PDF

While most detailed analyses of antibiotic resistance plasmids focus on those found in clinical isolates, less is known about the vast environmental reservoir of mobile genetic elements and the resistance and virulence factors they encode. We selectively isolated three strains of cefotaxime-resistant Escherichia coli from a wastewater-impacted coastal wetland. The cefotaxime-resistant phenotype was transmissible to a lab strain of E.

View Article and Find Full Text PDF

Self-transmissible multidrug resistance (MDR) plasmids are a major health concern because they can spread antibiotic resistance to pathogens. Even though most pathogens form biofilms, little is known about how MDR plasmids persist and evolve in biofilms. We hypothesize that (i) biofilms act as refugia of MDR plasmids by retaining them in the absence of antibiotics longer than well-mixed planktonic populations and that (ii) the evolutionary trajectories that account for the improvement of plasmid persistence over time differ between biofilms and planktonic populations.

View Article and Find Full Text PDF

To increase our basic understanding of the ecology and evolution of conjugative plasmids, we need reliable estimates of their rate of transfer between bacterial cells. Current assays to measure transfer rate are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very small, making estimates that rely on these numbers prone to noise.

View Article and Find Full Text PDF

Vibrio cholerae biotype El Tor is perpetuating the longest cholera pandemic in recorded history. The genomic islands VSP-1 and VSP-2 distinguish El Tor from previous pandemic V. cholerae strains.

View Article and Find Full Text PDF

Promiscuous plasmids like IncP-1 plasmids play an important role in the bacterial adaptation to pollution by acquiring and distributing xenobiotic catabolic genes. However, most information comes from isolates and the role of plasmids in governing community-wide bacterial adaptation to xenobiotics and other adaptive forces is not fully understood. Current information on the contribution of IncP-1 plasmids in community adaptation is limited because methods are lacking that directly isolate and identify the plasmid borne adaptive functions in whole-community DNA.

View Article and Find Full Text PDF

Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture.

View Article and Find Full Text PDF

By characterizing the trajectories of antibiotic resistance gene transfer in bacterial communities such as the gut microbiome, we will better understand the factors that influence this spread of resistance. Our aim was to investigate the host network of a multidrug resistance broad-host-range plasmid in the culturable gut microbiome of zebrafish. This was done through and conjugation experiments with as the donor of the plasmid pB10:: When this donor was mixed with the extracted gut microbiome, only transconjugants of were detected.

View Article and Find Full Text PDF

Although animal manure is applied to agricultural fields for its nutrient value, it may also contain potential contaminants. To determine the variability in such contaminants as well as in valuable nutrients, nine uncomposted manure samples from Idaho dairies collected during 2.5 years were analyzed for macro- and micro-nutrients, hormones, phytoestrogens, antibiotics, veterinary drugs, antibiotic resistance genes, and genetic elements involved in the spread of antibiotic resistance.

View Article and Find Full Text PDF

Multidrug resistance (MDR) of pathogens is an ongoing public health crisis exacerbated by the horizontal transfer of antibiotic resistance genes via conjugative plasmids. Factors that stabilize these plasmids in bacterial communities contribute to an even higher incidence of MDR, given the increased likelihood that a host will already contain a plasmid when it acquires another through conjugation. Here, we show one such stabilizing factor is host-plasmid coevolution under antibiotic selection, which facilitated the emergence of MDR via two distinct plasmids in communities consisting of Escherichia coli and Klebsiella pneumoniae once antibiotics were removed.

View Article and Find Full Text PDF

Bacterial plasmids substantially contribute to the rapid spread of antibiotic resistance, which is a crisis in healthcare today. Coevolution of plasmids and their hosts promotes this spread of resistance by ameliorating the cost of plasmid carriage. However, our knowledge of plasmid-bacteria coevolution is solely based on studies done in well-mixed liquid cultures, even though biofilms represent the main way of bacterial life on Earth and are responsible for most infections.

View Article and Find Full Text PDF

The rapid spread of antibiotic resistance among bacterial pathogens is a serious human health threat. While a range of environments have been identified as reservoirs of antibiotic resistance genes (ARGs), we lack understanding of the origins of these ARGs and their spread from environment to clinic. This is partly due to our inability to identify the natural bacterial hosts of ARGs and the mobile genetic elements that mediate this spread, such as plasmids and integrons.

View Article and Find Full Text PDF

Produce is increasingly recognized as a reservoir of human pathogens and transferable antibiotic resistance genes. This study aimed to explore methods to characterize the transferable resistome of bacteria associated with produce. Mixed salad, arugula, and cilantro purchased from supermarkets in Germany were analyzed by means of cultivation- and DNA-based methods.

View Article and Find Full Text PDF

IS1071, an insertion element that primarily flanks organic xenobiotic degradation genes in cultured isolates, is suggested to play a key role in the formation and distribution of bacterial catabolic pathway gene clusters. However, in environmental settings, the identity of the IS1071 genetic cargo and its correspondence to the local selective conditions remain unknown. To respond, we developed a long-range PCR approach amplifying accessory genes between two IS1071 copies from community DNA followed by amplicon sequencing.

View Article and Find Full Text PDF

Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches.

View Article and Find Full Text PDF