Publications by authors named "Eva Tomaskovic-Crook"

Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications.

View Article and Find Full Text PDF

Considerable research is being undertaken to develop novel biomaterials-based approaches for surgical reconstruction of bone defects. This extends to three-dimensional (3D) printed materials that provide stable, structural, and functional support . However, few preclinical models can simulate human biological conditions for clinically relevant testing.

View Article and Find Full Text PDF

The periosteum is a thin layer of connective tissue covering bone. It is an essential component for bone development and fracture healing. There has been considerable research exploring the application of the periosteum in bone regeneration since the 19th century.

View Article and Find Full Text PDF
Article Synopsis
  • Periosteum is a vital, blood-rich membrane that covers bones, crucial for healing and surgery recovery.
  • A new ex vivo perfusion bioreactor was developed to keep periosteal tissues alive and metabolically active, simulating natural conditions by providing nutrients and oxygen.
  • The study demonstrates that this method can preserve periosteum for nearly four weeks, offering potential for advanced bone repair techniques using transplanted periosteum.
View Article and Find Full Text PDF

Diffuse high-grade gliomas contain some of the most dangerous human cancers that lack curative treatment options. The recent molecular stratification of gliomas by the World Health Organisation in 2021 is expected to improve outcomes for patients in neuro-oncology through the development of treatments targeted to specific tumour types. Despite this promise, research is hindered by the lack of preclinical modelling platforms capable of recapitulating the heterogeneity and cellular phenotypes of tumours residing in their native human brain microenvironment.

View Article and Find Full Text PDF

Bioengineered corneal substitutes offer a solution to the shortage of donor corneal tissue worldwide. As one of the major structural components of the cornea, collagen has shown great potential for tissue-engineered cornea substitutes. Herein, free-standing collagen membranes fabricated using electro-compaction were assessed in corneal bioengineering application by comparing them with nonelectro-compacted collagen (NECC).

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) are providing unprecedented insight into complex neuropsychiatric disorders such as schizophrenia (SZ). Here we review the use of iPSCs for investigating the etiopathology and treatment of SZ, beginning with conventional in vitro two-dimensional (2D; monolayer) cell modelling, through to more advanced 3D tissue studies. With the advent of 3D modelling, utilising advanced differentiation paradigms and additive manufacturing technologies, inclusive of patient-specific cerebral/neural organoids and bioprinted neural tissues, such live disease-relevant tissue systems better recapitulate "within-body" tissue function and pathobiology.

View Article and Find Full Text PDF

There is a fundamental need for clinically relevant, reproducible, and standardized human neural tissue models, not least of all to study heterogenic and complex human-specific neurological (such as neuropsychiatric) disorders. Construction of three-dimensional (3D) bioprinted neural tissues from native human-derived stem cells (e.g.

View Article and Find Full Text PDF

The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties.

View Article and Find Full Text PDF

Engineering substantia propria (or stroma of cornea) that mimics the function and anatomy of natural tissue is vital for in vitro modelling and in vivo regeneration. There are, however, few examples of bioengineered biomimetic corneal stroma. Here we describe the construction of an orthogonally oriented 3D corneal stroma model (3D-CSM) using pure electro-compacted collagen (EC).

View Article and Find Full Text PDF

Bioprinting human pluripotent stem cells (PSCs) provides an opportunity to produce three-dimensional (3D) cell-laden constructs with the potential to be differentiated in vitro to all tissue types of the human body. Here, we detail a previously published method for 3D printing human induced pluripotent stem cells (iPSCs; also applicable to human embryonic stem cells) within a clinically amenable bioink (also described in Chapter 10 ) that is cross-linked to a 3D construct. The printed iPSCs continue to have self-replicating and multilineage cell induction potential in situ, and the constructs are robust and amenable to different differentiation protocols for fabricating diverse tissue types, with the potential to be applied for both research- and clinical-product development.

View Article and Find Full Text PDF

Bioprinting cells with an electrically conductive bioink provides an opportunity to produce three-dimensional (3D) cell-laden constructs with the option of electrically stimulating cells in situ during and after tissue development. We and others have demonstrated the use of electrical stimulation (ES) to influence cell behavior and function for a more biomimetic approach to tissue engineering. Here, we detail a previously published method for 3D printing an electrically conductive bioink with human neural stem cells (hNSCs) that are subsequently differentiated.

View Article and Find Full Text PDF

Electrical stimulation is increasingly being used to modulate human cell behaviour for biotechnological research and therapeutics. Electrically conductive polymers (CPs) such as polypyrrole (PPy) are amenable to in vitro and in vivo cell stimulation, being easy to synthesise with different counter ions (dopants) to augment biocompatibility and cell-effects. Extending our earlier work, which showed that CP-mediated electrical stimulation promotes human neural stem cell differentiation, here we report using electroactive PPy containing the anionic dopant dodecylbenzenesulfonate (DBS) to modulate the fate determination of human induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Single Cell Force Spectroscopy was applied to measure the single cell de-adhesion between human neural stem cells (hNSC) and gelatin methacrylate (GelMA) hydrogel with varying modulus in the range equivalent to brain tissue. The cell de-adhesion force and energy were predominately generated via unbinding of complexes formed between RGD groups of the GelMA and cell surface integrin receptors and the de-adhesion force/energy were found to increase with decreasing modulus of the GelMA hydrogel. For the softer GelMA hydrogels (160 Pa and 450 Pa) it was proposed that a lower degree of cross-linking enables a greater number of polymer chains to bind and freely extend to increase the force and energy of the hNSC-GelMA de-adhesion.

View Article and Find Full Text PDF

Electricity is important in the physiology and development of human tissues such as embryonic and fetal development, and tissue regeneration for wound healing. Accordingly, electrical stimulation (ES) is increasingly being applied to influence cell behavior and function for a biomimetic approach to in vitro cell culture and tissue engineering. Here, the application of conductive polymer (CP) poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) pillars is described, direct-write printed in an array format, for 3D ES of maturing neural tissues that are derived from human neural stem cells (NSCs).

View Article and Find Full Text PDF

Graphene-based materials represent advanced platforms for tissue engineering and implantable medical devices. From a clinical standpoint, it is essential that these materials are produced using non-toxic and non-hazardous methods, and have predictable properties and reliable performance under variable physiological conditions; especially when used with a cellular component. Here we describe such a biomaterial, namely smart graphene-cellulose (G-C) paper, and its suitability for traditional planar two-dimensional (2D) or three-dimensional (3D) human cell support, verified by adipose-derived stem cell (ADSC) culture and osteogenic differentiation.

View Article and Find Full Text PDF

Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose.

View Article and Find Full Text PDF

Human brain organoids provide opportunities to produce three-dimensional (3D) brain-like tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a protocol for rapid and defined induction of brain organoids from human induced pluripotent stem cells (iPSCs), using commercially available culture and differentiation media and a cheap, easy to handle and clinically approved semisynthetic hydrogel. Importantly, the methodology is uncomplicated, well-defined, and reliable for reproducible and scalable organoid generation, and amendable to principles of current good laboratory practice (cGLP), with the potential for prospective adaptation to current good manufacturing practice (cGMP) toward clinical compliance.

View Article and Find Full Text PDF

Electrical stimulation of hydrogels has been performed to enable micro-actuation or controlled movement of ions and biomolecules such as in drug release applications. Hydrogels are also increasingly used as low modulus, biocompatible coatings on electrode devices and thus are exposed to the effects of electrical stimulation. As such, there is growing interest in the latter, especially on the dynamic and nanoscale physical properties of hydrogels.

View Article and Find Full Text PDF

The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids.

View Article and Find Full Text PDF

The discovery and study of human neural stem cells has advanced our understanding of human neurogenesis, and the development of novel therapeutics based on neural cell replacement. Here, we describe methods to culture and cryopreserve human neural stem cells (hNSCs) for expansion and banking. Importantly, the protocols ensure that the multipotency of hNSCs is preserved to enable differentiation to neurons and supporting neuroglia.

View Article and Find Full Text PDF

Cryobanking human pluripotent stem cells (hPSCs), be they human embryonic (hESCs) or induced pluripotent stem cells (iPSCs), is essential for their use in research and cell-based therapeutics. Working and master cell banks can be generated with a desired level of quality assurance applied during cell freezing and storage. Conventional vitrification has evolved to more advanced control rate freezing, culminating in a myriad of published protocols with variable proficiencies and clinical efficacies.

View Article and Find Full Text PDF

Deficits in neurite outgrowth, possibly involving dysregulation of risk genes neuregulin-1 (NRG1) and disrupted in schizophrenia 1 (DISC1) have been implicated in psychiatric disorders including schizophrenia. Electrical stimulation using conductive polymers has been shown to stimulate neurite outgrowth of differentiating human neural stem cells. This study investigated the use of the electroactive conductive polymer polypyrrole (Ppy) to counter impaired neurite outgrowth of primary pre-frontal cortical (PFC) neurons from NRG1-knock out (NRG1-KO) and DISC1-locus impairment (DISC1-LI) mice.

View Article and Find Full Text PDF

Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose.

View Article and Find Full Text PDF
Article Synopsis
  • The process of epithelial-mesenchymal transition (EMT) has been altered by carcinoma cells, leading to a state called epithelial-mesenchymal plasticity (EMP), which is linked to increased metastatic risk and poor breast cancer prognosis.
  • The study examined EMP in breast cancer cell lines, using EGF stimulation and hypoxic conditions to transition cells to a mesenchymal phenotype and analyzed gene expression changes through RNA sequencing.
  • Results showed that EGF and hypoxia induce similar mesenchymal states in breast cancer cells, but revealed differing cellular signaling pathways and responses to treatment with chemical inhibitors.
View Article and Find Full Text PDF