Publications by authors named "Eva Tloustova"

Bioorthogonal reactions that enable switching molecular functions by breaking chemical bonds have gained prominence, with the tetrazine-mediated cleavage of trans-cyclooctene caged compounds (click-to-release) being particularly noteworthy for its high versatility, biocompatibility, and fast reaction rates. Despite several recent advances, the development of highly reactive tetrazines enabling quantitative elimination from trans-cyclooctene linkers remains challenging. In this study, we present the synthesis and application of sulfo-tetrazines, a class of derivatives featuring phenolic hydroxyl groups with increased acidity constants (pK).

View Article and Find Full Text PDF

Yohimbine, a natural indole alkaloid and a nonselective adrenoceptor antagonist, possesses potential benefits in treating inflammatory disorders and sepsis. Nevertheless, its broader clinical use faces challenges due to its low receptor selectivity. A structure-activity relationship study of novel yohimbine analogues identified amino esters of yohimbic acid as potent and selective ADRA2A antagonists.

View Article and Find Full Text PDF

A series of quinolino-fused 7-deazapurine (pyrimido[5',4':4,5]pyrrolo[3,2-]quinoline) ribonucleosides were designed and synthesized. The synthesis of the key 11-chloro-pyrimido[5',4':4,5]pyrrolo[3,2-]quinoline was based on the Negishi cross-coupling of iodoquinoline with zincated 4,6-dichloropyrimidine followed by azidation and thermal or photochemical cyclization. Vorbrüggen glycosylation of the tetracyclic heterocycle followed by cross-coupling or substitution reactions at position 11 gave the desired set of final nucleosides that showed moderate to weak cytostatic activity and fluorescent properties.

View Article and Find Full Text PDF

Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.

View Article and Find Full Text PDF

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC values as low as 19 nM (human PNP) and 4 nM ( () PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC values as low as 9 nM.

View Article and Find Full Text PDF
Article Synopsis
  • - A new series of N-branched acyclic nucleoside phosphonates (aza-ANPs) was created using a specific chemical reaction, but the final versions were ineffective at entering cells and did not directly show anti-trypanosomal activity.
  • - These compounds were found to inhibit a specific enzyme related to Trypanosoma brucei, with effective concentration (K values) ranging from 1.7-14.1 μM.
  • - The prodrugs derived from these compounds showed promising anti-trypanosomal effects, particularly one derivative that was highly effective with an EC of 0.58 μM and also demonstrated some cytotoxic effects against cancer cell lines.
View Article and Find Full Text PDF

A series of acyclic nucleoside phosphonates (ANPs) was designed as inhibitors of bacterial adenylate cyclases (ACs), where adenine was replaced with 2-amino-4-arylthiazoles. The target compounds were prepared using the halogen dance reaction. Final AC inhibitors were evaluated in cell-based assays (prodrugs) and cell-free assays (phosphono diphosphates).

View Article and Find Full Text PDF

A series of novel acyclic nucleoside phosphonates (ANPs) was synthesized as potential adenylate cyclase inhibitors, where the adenine nucleobase of adefovir (PMEA) was replaced with a 5-substituted 2-aminothiazole moiety. The design was based on the structure of MB05032, a potent and selective inhibitor of fructose 1,6-bisphosphatase and a good mimic of adenosine monophosphate (AMP). From the series of eighteen novel ANPs, which were prepared as phosphoroamidate prodrugs, fourteen compounds were potent (single digit micromolar or submicromolar) inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT), mostly without observed cytotoxicity in J774A.

View Article and Find Full Text PDF

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections.

View Article and Find Full Text PDF

Human African Trypanosomiasis caused by species is one of the most damaging neglected tropical diseases. While the number of newly diagnosed cases per year is record low, there is still high interest in the development of new antitrypanosomal agents in case of resistance to currently used drugs and their combinations, and to replace drugs with serious side effects. We report a series of 7-methyl-7-deazapurine (5-methyl-pyrrolo[2,3-]pyrimidine) ribonucleosides bearing alkyl, methylsulfanyl, methylamino, or diverse alkoxy groups at position 6 that was prepared through glycosylation of 6-chloro-7-methyl-7-deazapurine followed by nucleophilic substitutions or cross-coupling reactions at position 6 and deprotection.

View Article and Find Full Text PDF
Article Synopsis
  • Trypanosoma brucei is the parasite responsible for Human African Trypanosomiasis, and existing treatments often have inefficiencies and toxicity issues.
  • Researchers developed new compounds called 3'-deoxy-3'-fluororibonucleosides from modified nucleosides, aiming to find more effective treatments.
  • The most promising compounds showed significant activity against the parasites at very low concentrations and no toxicity to human cells, highlighting their potential for future drug development.
View Article and Find Full Text PDF

A series of 8-substituted 1-methyl-1,4-dihydropyrazolo[3',4':4,5]pyrrolo[2,3-]pyrimidine (methylpyrazolo-fused 7-deazapurine) ribonucleosides have been designed and synthesized. Two synthetic approaches to the key heterocyclic aglycon , (i) a six-step classical heterocyclization starting from 5-chloro-1-methyl-4-nitropyrazole and (ii) a three-step cross-coupling and cyclization approach starting from the zincated 4,6-dichloropyrimidine, gave comparable total yields of 18% vs 13%. The glycosylation of was attempted by three different methods but only the Vorbrüggen silyl-base protocol was efficient and stereoselective to give desired β-anomeric nucleoside intermediate .

View Article and Find Full Text PDF

All four isomeric series of novel 4-substituted pyrido-fused 7-deazapurine ribonucleosides possessing the pyridine nitrogen atom at different positions were designed and synthesized. The total synthesis of each isomeric fused heterocycle through multistep heterocyclization was followed by glycosylation and derivatization at position 4 by cross-coupling reactions or nucleophilic substitutions. All compounds were tested for cytostatic and antiviral activity.

View Article and Find Full Text PDF

The nucleoside/nucleotide derived antiviral agents have been the most important components of antiviral therapy used in clinics. Recently, the focus of the medicinal chemists within this exciting research field has been affected mainly by the lack of effective therapies for the Hepatitis C virus (HCV) infection and several other "neglected" diseases caused by viruses such as Zika or Dengue. 2'-Methyl modified nucleosides and their monophosphate prodrugs (ProTides) have revolutionized the therapies for HCV in the last few years and, according to the latest research efforts, have also brought a promise for treatment of diseases caused by other members of Flaviviridae family.

View Article and Find Full Text PDF

Neurosteroids are endogenous steroidal compounds that can modulate neuronal receptors. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated, calcium-permeable ion channels that are of particular interest, as they participate in synaptic transmission and are implicated in various processes, such as learning, memory, or long-term neuronal potentiation. Positive allosteric modulators that increase the activity of NMDARs may provide a therapeutic aid for patients suffering from neuropsychiatric disorders where NMDAR hypofunction is thought to be involved, such as intellectual disability, autism spectrum disorder, or schizophrenia.

View Article and Find Full Text PDF

Three series of isomeric pyrrolo- and furo-fused 7-deazapurine ribonucleosides were synthesized and screened for cytostatic and antiviral activity. The synthesis was based on heterocyclizations of hetaryl-azidopyrimidines to form the tricyclic heterocyclic bases, followed by glycosylation and final derivatizations through cross-coupling reactions or nucleophilic substitutions. The pyrrolo[2',3':4,5]pyrrolo[2,3- d]pyrimidine and furo[2',3':4,5]pyrrolo[2,3- d]pyrimidine ribonucleosides were found to be potent cytostatics, whereas the isomeric pyrrolo[3',2',4,5]pyrrolo[2,3- d]pyrimidine nucleosides were inactive.

View Article and Find Full Text PDF

Two isomeric series of new thieno-fused 7-deazapurine ribonucleosides (derived from 4-substituted thieno[2',3':4,5]pyrrolo[2,3-d]pyrimidines and thieno[3',2':4,5]pyrrolo[2,3-d]pyrimidines) were synthesized by a sequence involving Negishi coupling of 4,6-dichloropyrimidine with iodothiophenes, nucleophilic azidation, and cyclization of tetrazolopyrimidines, followed by glycosylation and cross-couplings or nucleophilic substitutions at position 4. Most nucleosides (from both isomeric series) exerted low micromolar or submicromolar in vitro cytostatic activities against a broad panel of cancer and leukemia cell lines and some antiviral activity against HCV. The most active were the 6-methoxy, 6-methylsulfanyl, and 6-methyl derivatives, which were highly active to cancer cells and less toxic or nontoxic to fibroblasts.

View Article and Find Full Text PDF

Herein, we report a new class of amide-based inhibitors (1-4) of N-methyl-d-aspartate receptors (NMDARs) that were prepared as analogues of pregnanolone sulfate (PAS) and pregnanolone glutamate (PAG) - the steroidal neuroprotective NMDAR inhibitors. A series of experiments were conducted to evaluate their physicochemical and biological properties: (i) the inhibitory effect of compounds 3 and 4 on NMDARs was significantly improved (IC=1.0 and 1.

View Article and Find Full Text PDF

7-(2-Thienyl)-7-deazaadenosine (AB61) showed nanomolar cytotoxic activities against various cancer cell lines but only mild (micromolar) activities against normal fibroblasts. The selectivity of AB61 was found to be due to inefficient phosphorylation of AB61 in normal fibroblasts. The phosphorylation of AB61 in the leukemic CCRF-CEM cell line proceeds well and it was shown that AB61 is incorporated into both DNA and RNA, preferentially as a ribonucleotide.

View Article and Find Full Text PDF

The synthesis and biological activity profiling of a large series of diverse pyrrolo[2,3-d]pyrimidine 4'-C-methylribonucleosides bearing an (het)aryl group at position 4 or 5 is reported as well as the synthesis of several phosphoramidate prodrugs. These compounds are 4'-C-methyl derivatives of previously reported cytostatic hetaryl-7-deazapurine ribonucleosides. The synthesis is based on glycosylation of halogenated 7-deazapurine bases with 1,2-di-O-acetyl-3,5-di-O-benzyl-4-C-methyl-β-d-ribofuranose followed by cross-coupling and nucleophilic substitution reactions.

View Article and Find Full Text PDF

We prepared a novel series of conformationally restricted bicyclonucleosides and nucleotides. The synthetic approach employed a ring closing metathesis to provide access to both 6 and 7 membered saturated and unsaturated rings linking the 3' to 5' methylene groups of the sugar. The bicyclonucleosides were also transformed to the corresponding phosphoramidate prodrugs by an innovative one-pot protocol of boronate ester protection, coupling of the phosphoryl chloridate and deprotection of the boronate.

View Article and Find Full Text PDF

A series of 80 7-(het)aryl- and 7-ethynyl-7-deazapurine ribonucleosides bearing a methoxy, methylsulfanyl, methylamino, dimethylamino, methyl, or oxo group at position 6, or 2,6-disubstituted derivatives bearing a methyl or amino group at position 2, were prepared, and the biological activity of the compounds was studied and compared with that of the parent 7-(het)aryl-7-deazaadenosine series. Several of the compounds, in particular 6-substituted 7-deazapurine derivatives bearing a furyl or ethynyl group at position 7, were significantly cytotoxic at low nanomolar concentrations whereas most were much less potent or inactive. Promising activity was observed with some compounds against Mycobacterium bovis and also against hepatitis C virus in a replicon assay.

View Article and Find Full Text PDF

Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.

View Article and Find Full Text PDF

Two series of new 4-aminopyrimido[4,5-b]indole ribonucleosides bearing phenyl or hetaryl group at position 5 or 6 have been prepared by Suzuki or Stille cross-coupling reactions employing X-Phos ligand with (het)arylboronic acids or stannanes. A series of 4-substituted nucleosides has been also prepared by Pd-catalyzed cross-couplings or nucleophilic substitution. Some of these compounds displayed moderate antiviral activities against HCV and dengue viruses.

View Article and Find Full Text PDF