Publications by authors named "Eva Sloncova"

Trophoblastic cell surface antigen 2 (TROP2) is a membrane glycoprotein overexpressed in many solid tumors with a poor prognosis, including intestinal neoplasms. In our study, we show that TROP2 is expressed in preneoplastic lesions, and its expression is maintained in most colorectal cancers (CRC). High TROP2 positivity correlated with lymph node metastases and poor tumor differentiation and was a negative prognostic factor.

View Article and Find Full Text PDF

Commensal microbiota contribute to gut homeostasis by inducing transcription of mucosal genes. Analysis of the impact of various microbiota on intestinal tissue provides an important insight into the function of this organ. We used cDNA microarrays to determine the gene expression signature of mucosa isolated from the small intestine and colon of germ-free (GF) mice and animals monoassociated with two strains.

View Article and Find Full Text PDF

The first step in the development of human colorectal cancer is aberrant activation of the Wnt signaling pathway. Wnt signaling hyperactivation is predominantly caused by loss-of-function mutations in the adenomatous polyposis coli (APC) gene that encodes the pathway negative regulator. In order to identify genes affected by the Apc loss, we performed expression profiling of intestinal epithelium isolated from mice harboring a conditional Apc allele.

View Article and Find Full Text PDF

T-cell factor 4 (TCF4), together with β-catenin coactivator, functions as the major transcriptional mediator of the canonical wingless/integrated (Wnt) signaling pathway in the intestinal epithelium. The pathway activity is essential for both intestinal homeostasis and tumorigenesis. To date, several mouse models and cellular systems have been used to analyze TCF4 function.

View Article and Find Full Text PDF

Neoplastic growth is frequently associated with genomic DNA methylation that causes transcriptional silencing of tumor suppressor genes. We used a collection of colorectal polyps and carcinomas in combination with bioinformatics analysis of large datasets to study the expression and methylation of Hypermethylated in cancer 1 (HIC1), a tumor suppressor gene inactivated in many neoplasms. In premalignant stages, HIC1 expression was decreased, and the decrease was linked to methylation of a specific region in the HIC1 locus.

View Article and Find Full Text PDF

The Wnt pathway plays a crucial role in self-renewal and differentiation of cells in the adult gut. In the present study, we revealed the functional consequences of inhibition of canonical Wnt signaling in the intestinal epithelium. The study was based on generation of a novel transgenic mouse strain enabling inducible expression of an N-terminally truncated variant of nuclear Wnt effector T cell factor 4 (TCF4).

View Article and Find Full Text PDF

Unlabelled: Hypermethylated in cancer 1 (HIC1) represents a prototypic tumor suppressor gene frequently inactivated by DNA methylation in many types of solid tumors. The gene encodes a sequence-specific transcriptional repressor controlling expression of several genes involved in cell cycle or stress control. In this study, a Hic1 allele was conditionally deleted, using a Cre/loxP system, to identify genes influenced by the loss of Hic1.

View Article and Find Full Text PDF
Article Synopsis
  • The Wnt signaling pathway is essential for embryonic development and adult tissue maintenance, but its abnormal activation is linked to several cancers, including those of the gastrointestinal and breast tissues.
  • This study discovered that monensin, an antibiotic, effectively inhibits Wnt signaling in various cell types and animal models, including zebrafish and Xenopus embryos.
  • Monensin also reduced β-catenin levels in colorectal cancer cells, leading to decreased expression of genes that promote cell growth and tumor progression in mice, suggesting its potential as an anticancer treatment for Wnt-related neoplasia.
View Article and Find Full Text PDF

Background & Aims: The Wnt signaling pathway is required for maintenance of the intestinal epithelia; blocking this pathway reduces the proliferative capacity of the intestinal stem cells. However, aberrant Wnt signaling leads to intestinal cancer. We investigated the roles of the Wnt pathway in homeostasis of the intestinal epithelium and during malignant transformation in human cells and mice.

View Article and Find Full Text PDF

HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene located on chromosome 17p13.3, a region frequently hypermethylated or deleted in human neoplasias. In mouse, Hic1 is essential for embryonic development and exerts an antitumor role in adult animals.

View Article and Find Full Text PDF

Migration is a complex process that, besides its various physiological functions in embryogenesis and adult tissues, plays a crucial role in cancer cell invasion and metastasis. The focus of this study is the involvement and collaboration of Akt, focal adhesion kinase (FAK), and Src kinases in migration and invasiveness of colorectal cancer cells. We show that all three kinases can be found in one protein complex; nevertheless, the interaction between Akt and Src is indirect and mediated by FAK.

View Article and Find Full Text PDF

Increased activity of the Src tyrosine protein kinase that has been observed in a large number of human malignancies appears to be a promising target for drug therapy. In the present study, a critical role of the Src activity in the deregulation of mTOR signaling pathway in Rous sarcoma virus (RSV)-transformed hamster fibroblasts, H19 cells, was shown using these cells treated with the Src-specific inhibitor, SU6656, and clones of fibroblasts expressing either the active Src or the dominant-negative Src kinase-dead mutant. Disruption of the Src kinase activity results in substantial reduction of the phosphorylation and activity of the Akt/protein kinase B (PKB), phosphorylation of tuberin (TSC2), mammalian target of rapamycin (mTOR), S6K1, ribosomal protein S6, and eukaryotic initiation factor 4E-binding protein 4E-BP1.

View Article and Find Full Text PDF

CART (cocaine- and amphetamine-regulated transcript) peptides have been studied for ten years. We report specific binding of 125I-CART(61-102) to the rat adrenal pheochromocytoma PC12 cell line, both intact cells and cell membranes. Saturation binding to intact plated cells resulted in Kd of 0.

View Article and Find Full Text PDF

Active, wild-type v-Src and its kinase-dead double Y416F-K295N mutant were expressed in hamster fibroblasts. Expression of the active v-Src induced activation of endogenous c-Src and increased general protein-tyrosine phosphorylation in the infected cells. Expression of the kinase-dead mutant induced hypophosphorylation of Tyr416 of the endogenous c-Src.

View Article and Find Full Text PDF
Article Synopsis
  • * Clones H8 and G10 showed significant intercellular structures and higher levels of differentiation markers like CEACAM 1 and alkaline phosphatase, while G9 and A3 displayed a weaker response in these aspects.
  • * Although all clones experienced apoptosis when treated with butyrate, G9 and A3 were more sensitive to it, suggesting that variations in differentiation and response may indicate stem cell-like properties among HT29 cells.
View Article and Find Full Text PDF

beta-catenin has a dual function; it is implicated in intercellular junctions and transcriptional co-activation. Here we examined the regulation of the expression and localization of beta-catenin in HT29 colorectal adenocarcinoma cells. Our results showed that inhibition of PI-3 kinase with wortmannin was accompanied by a considerably reduced expression of beta-catenin.

View Article and Find Full Text PDF

Sodium butyrate or glucose deprivation induce a more differentiated phenotype in many cancer cells. The aim of this study was to determine whether the induction effect of butyrate and/or glucose deprivation is dependent, in some way, on the differentiation state of individual cell lines. Sodium butyrate enhanced alkaline phosphatase activity and induced formation of an ultrastructurally more differentiated phenotype in both HT29 and HT115 cell lines.

View Article and Find Full Text PDF

In epithelial cells, the cell surface glycoprotein E-cadherin is a key molecule in the establishment of cell-cell adhesion. In addition to its contribution to cell adhesion, E-cadherin was found to induce ligand-independent activation of the EGF receptor (EGFR), likely as a result of their co-clustering. As it has also been reported that ligand activation of the overexpressed EGFRs disturb E-cadherin-mediated cell-cell adhesion, we analyzed E-cadherin-EGFR interactions and their consequences in A431 cells and in two colorectal cancer cell lines using immunoblotting and analyzes of several protein kinase activities.

View Article and Find Full Text PDF

Growth factors and hormones activate global and selective protein translation by phosphorylation and therefore activation of p70 S6 kinase through a wortmannin-sensitive phosphoinositide-3 kinase (PI-3K) antiapoptotic pathway and a rapamycin-sensitive signalling pathway of mTOR. Here we demonstrate that the phosphorylation of 40S ribosomal protein S6, a physiological substrate p70 S6 kinase, was highly increased by growth-stimulation of the cytolytic T cells (CTLL2) with interleukin 2 (IL2), which was accompanied with the increased phosphorylation of p70 S6K. The activity of p70 S6K and phosphorylation of the S6 protein was completely blocked by rapamycin and significantly decreased upon treatment of the cells with wortmannin, indicating an involvement of the PI-3K pathway in concert with the signalling pathway of mTOR in IL2-dependent phos-phorylation of ribosomal protein S6.

View Article and Find Full Text PDF

Morphological and biochemical studies of HT29 cells treated with sodium butyrate and/or glucose-deprived revealed both apoptotic and differentiation response. The main apoptotic response was accompanied with an increase of floating cells. However, the ultrastructural analysis of adherent cells showed the typical apoptotic character of the nucleus in some of them.

View Article and Find Full Text PDF
Article Synopsis
  • - In hamster fibroblasts transformed by Rous sarcoma virus (RSV), the PI-3K/Akt pathway is activated, leading to increased protein synthesis through the initiation factor eIF2B.
  • - Inhibition of PI-3K with wortmannin reduces the phosphorylation of p70 S6k and ribosomal protein S6 in non-transformed cells, indicating its role in normal cells.
  • - However, in RSV-transformed cells, PI-3K does not regulate p70 S6k, suggesting that RSV transformation alters the signaling pathway involved in protein synthesis.
View Article and Find Full Text PDF

The high level of alkaline phosphatase activity in HT29 cells induced after 2 or 5 days of butyrate treatment was decreased during their prolonged exposure (about 30 days) to this agent together with a decrease of sensitivity to apoptosis. However, an enormous additive effect on alkaline phosphatase activity was found after butyrate treatment of glucose-starved cells. In concert with this finding, the substructural analysis revealed a dense brush border, tendency to polarization and morphologically normal mitochondria.

View Article and Find Full Text PDF