Publications by authors named "Eva Sitarz"

Elastin is a major polymeric protein of the extracellular matrix, providing critical properties of extensibility and elastic recoil. The rs2071307 genomic polymorphism, resulting in the substitution of a serine for a glycine residue in a VPG motif in tropoelastin, has an unusually high minor allele frequency in humans. A consequence of such allelic heterozygosity would be the presence of a heterogeneous elastin polymer in up to 50% of the population, a situation which appears to be unique to Homo sapiens.

View Article and Find Full Text PDF

Polymeric elastin provides the physiologically essential properties of extensibility and elastic recoil to large arteries, heart valves, lungs, skin and other tissues. Although the detailed relationship between sequence, structure and mechanical properties of elastin remains a matter of investigation, data from both the full-length monomer, tropoelastin, and smaller elastin-like polypeptides have demonstrated that variations in protein sequence can affect both polymeric assembly and tensile mechanical properties. Here we model known splice variants of human tropoelastin (hTE), assessing effects on shape, polymeric assembly and mechanical properties.

View Article and Find Full Text PDF

Elastin is a fibrous structural protein of the extracellular matrix that provides reversible elastic recoil to vertebrate tissues such as arterial vessels, lung, and skin. The elastin monomer, tropoelastin, contains a large proportion of intrinsically disordered and flexible hydrophobic sequences that collectively are responsible for the initial phase separation of monomers during assembly, and are essential for driving elastic recoil. While structural disorder of hydrophobic sequences is controlled by a high proline and glycine residue composition, hydrophobic domain 30 of human tropoelastin is atypically proline-poor, and forms β-sheet amyloid-like fibrils as an individual peptide.

View Article and Find Full Text PDF

Elastin is a self-assembling extracellular matrix protein that provides elasticity to tissues. For entropic elastomers such as elastin, conformational disorder of the monomer building block, even in the polymeric form, is essential for elastomeric recoil. The highly hydrophobic monomer employs a range of strategies for maintaining disorder and flexibility within hydrophobic domains, particularly involving a minimum compositional threshold of proline and glycine residues.

View Article and Find Full Text PDF

Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self-assembly that aligns lysine residues for crosslinking.

View Article and Find Full Text PDF

Elastin is a major structural component of elastic fibres that provide properties of stretch and recoil to tissues such as arteries, lung and skin. Remarkably, after initial deposition of elastin there is normally no subsequent turnover of this protein over the course of a lifetime. Consequently, elastic fibres must be extremely durable, able to withstand, for example in the human thoracic aorta, billions of cycles of stretch and recoil without mechanical failure.

View Article and Find Full Text PDF

Elastin is a polymeric structural protein that imparts the physical properties of extensibility and elastic recoil to tissues. The mechanism of assembly of the tropoelastin monomer into the elastin polymer probably involves extrinsic protein factors but is also related to an intrinsic capacity of elastin for ordered assembly through a process of hydrophobic self-aggregation or coacervation. Using a series of simple recombinant polypeptides based on elastin sequences and mimicking the unusual alternating domain structure of native elastin, we have investigated the influence of sequence motifs and domain structures on the propensity of these polypeptides for coacervation.

View Article and Find Full Text PDF