Interleukin 23 and the interleukin 23 receptor (IL-23-IL23R) are described as the major enhancing factors for Interleukin 17 (IL-17) in allergic airway inflammation. IL-17 is considered to induce neutrophilic inflammation in the lung, which is often observed in severe, steroid-resistant asthma-phenotypes. For that reason, understanding of IL-23 and IL-17 axis is very important for future therapy strategies, targeting neutrophil pathway of bronchial asthma.
View Article and Find Full Text PDFThe essential trace element zinc is indispensable for proper immune function as zinc deficiency accompanies immune defects and dysregulations like allergies, autoimmunity and an increased presence of transplant rejection. This point to the importance of the physiological and dietary control of zinc levels for a functioning immune system. This study investigates the capacity of zinc to induce immune tolerance.
View Article and Find Full Text PDFScope: Zinc is an essential trace element, regulating immune function. Its deficiency results in immune dysfunction and transplant rejection. In here, a benefit of zinc supplementation for the induction of tolerance was investigated, focusing on the TH 1-dominated allogeneic immune reaction.
View Article and Find Full Text PDFPurpose: The trace element zinc is essential for immune function and its regulation. Since zinc deficiency and allergic hyperresponsive reactions are often accompanied, the influence of zinc on allergen-induced cell growth, CD4+ regulatory T (Treg) cell numbers and cytokine expression during allergic immune reactions was investigated.
Methods: Peripheral blood mononuclear cells (PBMCs) from non-atopic and atopic subjects were treated with timothy grass allergen pre-incubated with or without zinc.
IL-1β and TNFα participate in a wide range of immunoregulatory activities. The overproduction of these cytokines can result in inflammatory and autoimmune diseases. Monocytes are the main producers of both cytokines.
View Article and Find Full Text PDFMild zinc deficiency in humans negatively affects IL-2 production resulting in declined percentages of cytolytic T cells and decreased NK cell lytic activity, which enhances the susceptibility to infections and malignancies. T-cell activation is critically regulated by zinc and the normal physiological zinc level in T-cells slightly lies below the optimal concentration for T-cell functions. A further reduction in zinc level leads to T-cell dysfunction and autoreactivity, whereas high zinc concentrations (100 μM) were shown to inhibit interleukin-1 (IL-1)-induced IL-1 receptor kinase (IRAK) activation.
View Article and Find Full Text PDFDisturbances of zinc homeostasis have been observed in several diseases, including diabetes mellitus. To further characterize the association between zinc and diabetes, we recruited 75 patients with type 1 or type 2 diabetes and 75 nondiabetic sex-/age-matched control subjects in order to analyze differences concerning human zinc transporter 8 (hZnT-8) expression, single nucleotide polymorphisms (SNPs) in the genes of hZnT-8 as well as metallothionein 1A and serum/intracellular zinc. Furthermore, we investigated the relation between insulin and zinc homeostasis in type 2 diabetic subjects and consolidated our results by in vitro analysis of the effect of insulin on cellular zinc status and by analysis of the modulation of insulin signal transduction by intracellular zinc homeostasis.
View Article and Find Full Text PDF