Publications by authors named "Eva Randarova"

The effective treatment of inflammatory diseases, particularly their chronic forms, is a key task of modern medicine. Herein, we report the synthesis and evaluation of biocompatible polymer conjugates based on N-2-(hydroxypropyl)methacrylamide copolymers enabling the controlled release of acetylsalicylic acid (ASA)-based anti-inflammatory drugs under specific stimuli. All polymer nanotherapeutics were proposed as water-soluble drug delivery systems with a hydrodynamic size below 10 nm ensuring suitability for the parenteral application and preventing opsonization by the reticuloendothelial system.

View Article and Find Full Text PDF

Rheumatoid arthritis is a chronic inflammatory autoimmune disease caused by alteration of the immune system. Current therapies have several limitations and the use of nanomedicines represents a promising strategy to overcome them. By employing a mouse model of adjuvant induced arthritis, we aimed to evaluate the biodistribution and therapeutic effects of glucocorticoid dexamethasone conjugated to a nanocarrier based on biocompatible N-(2-hydroxypropyl) methacrylamide copolymers.

View Article and Find Full Text PDF

The application of polymer-based drug delivery systems is advantageous for improved pharmacokinetics, controlled drug release, and decreased side effects of therapeutics for inflammatory disease. Herein, we describe the synthesis and characterization of linear N-(2-hydroxypropyl)methacrylamide-based polymer conjugates designed for controlled release of the anti-inflammatory drug dexamethasone through pH-sensitive bonds. The tailored release rates were achieved by modifying DEX with four oxo-acids introducing reactive oxo groups to the DEX derivatives.

View Article and Find Full Text PDF

Nanomedicines, including polymer nanocarriers with controlled drug release, are considered next-generation therapeutics with advanced therapeutic properties and reduced side effects. To develop safe and efficient nanomedicines, it is crucial to precisely determine the drug release kinetics. Herein, we present application of analytical methods, i.

View Article and Find Full Text PDF

Nanomedicines are considered next generation therapeutics with advanced therapeutic properties and reduced side effects. Herein, we introduce tailored linear and star-like water-soluble nanosystems as stimuli-sensitive nanomedicines for the treatment of solid tumors or hematological malignancies. The polymer carrier and drug pharmacokinetics were independently evaluated to elucidate the relationship between the nanosystem structure and its distribution in the body.

View Article and Find Full Text PDF

Exosomes are extracellular vesicles with the ability to encapsulate bioactive molecules, such as therapeutics. This study identified a new exosome mediated route of doxorubicin and poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA)-bound doxorubicin trafficking in the tumor mass. Exosome loading was achieved via incubation of the therapeutics with an adherent human breast adenocarcinoma cell line and its derived spheroids.

View Article and Find Full Text PDF

Drug repurposing is a promising strategy for identifying new applications for approved drugs. Here, we describe a polymer biomaterial composed of the antiretroviral drug ritonavir derivative (5-methyl-4-oxohexanoic acid ritonavir ester; RD), covalently bound to HPMA copolymer carrier via a pH-sensitive hydrazone bond (P-RD). Apart from being more potent inhibitor of P-glycoprotein in comparison to ritonavir, we found RD to have considerable cytostatic activity in six mice (IC ~ 2.

View Article and Find Full Text PDF

Nanomedicines are a novel class of therapeutics that benefit from the nano dimensions of the drug carrier. These nanosystems are highly advantageous mainly within cancer treatment due to their enhanced tumor accumulation. Monolayer tumor cells frequently used in routine preclinical assessment of nanotherapeutics do not have a spatial structural architecture that allows the investigation of the penetration of nanomedicines to predict their behavior in real tumor tissue.

View Article and Find Full Text PDF

Persistent luminescence nanoparticles (PLNPs) are innovative nanomaterials highly useful for bioimaging applications. Indeed, due to their particular optical properties, i.e.

View Article and Find Full Text PDF

Polymer-drug conjugates have several advantages in controlled drug delivery to inflammation as they can accumulate and release the drug in inflamed tissues or cells, which could circumvent the shortcomings of current therapy. To improve the therapeutic potential of polymer-drug conjugates in joint inflammation, we synthesized polymer conjugates based on -(2-hydroxypropyl) methacrylamide) copolymers labeled with a near-infrared fluorescent dye and covalently linked to the anti-inflammatory drug dexamethasone (DEX). The drug was bound to the polymer via a spacer enabling pH-sensitive drug release in conditions mimicking the environment inside inflammation-related cells.

View Article and Find Full Text PDF

In the past decades, nanosized drug delivery systems based on N-(2-hydroxypropyl)methacrylamide copolymers (pHPMA) have gained increasing attention in nanomedicine field due to their hydrophilicity, versatility, biocompatibility, non-toxicity, and non-immunogenicity. Indeed, pHPMA nanosystems with various controlled drug release capabilities inside targeted tissues or cells have been intensively studied. This paper summarizes recent advances in the design and application of pHPMA conjugates with specific antibodies or their fragments, focusing predominantly on the systems for the cancer therapy, particularly, the mechanisms of action of therapeutic antibodies, the approaches of their modification and subsequent attachment of pHPMA and their conjugates with diverse active moieties.

View Article and Find Full Text PDF

Here, we describe innovative synthesis of well-defined biocompatible N-(2-hydroxypropyl) methacrylamide (HPMA)-based polymer carriers and their drug conjugates with pirarubicin intended for controlled drug delivery and pH-triggered drug activation in tumor tissue. Polymer carrier synthesis was optimized to obtain well-defined linear HPMA-based polymer precursor with dispersity close to 1 and molar mass close to renal threshold with minimal synthesis steps. The developed synthesis enables preparation of tailored polymer nanomedicines with highly enhanced biological behavior in vivo, especially the biodistribution, urine elimination, tumor accumulation and anticancer activity.

View Article and Find Full Text PDF