Publications by authors named "Eva Rached"

A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand.

View Article and Find Full Text PDF

The kidney is one of the main targets of drug toxicity, but early detection of renal damage is often difficult. As part of the InnoMed PredTox project, a collaborative effort aimed at assessing the value of combining omics technologies with conventional toxicology methods for improved preclinical safety assessment, we evaluated the performance of a panel of novel kidney biomarkers in preclinical toxicity studies. Rats were treated with a reference nephrotoxin or one of several proprietary compounds that were dropped from drug development in part due to renal toxicity.

View Article and Find Full Text PDF

For early detection of toxicity and improved mechanistic understanding, GC/MS-, 1H NMR-, and LC/MS-based metabonomics were applied to urine samples from a rodent toxicity study on the mycotoxin and renal carcinogen ochratoxin A (OTA). OTA was administered at doses of 0, 21, 70, and 210 microg/kg body wt for up to 90 days. Urine samples were collected at 24 h intervals 14, 28, and 90 days after the start of treatment and analyzed with GC/MS, 1H NMR, and LC/MS.

View Article and Find Full Text PDF

Although early detection of toxicant induced kidney injury during drug development and chemical safety testing is still limited by the lack of sensitive and reliable biomarkers of nephrotoxicity, omics technologies have brought enormous opportunities for improved detection of toxicity and biomarker discovery. Thus, transcription profiling has led to the identification of several candidate kidney biomarkers such as kidney injury molecule (Kim-1), clusterin, lipocalin-2, and tissue inhibitor of metalloproteinase 1 (Timp-1), and metabonomic analysis of urine is increasingly used to indicate biochemical perturbations due to renal toxicity. This study was designed to assess the value of a combined (1)H-NMR and gas chromatography-mass spectrometry (GC-MS) metabonomics approach and a set of novel urinary protein markers for early detection of nephrotoxicity following treatment of male Wistar rats with gentamicin (60 and 120 mg/kg bw, s.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is a potent renal carcinogen, but little is known regarding the mechanism of OTA carcinogenicity. Early histopathological alterations induced by OTA in rat kidney include single cell death, stimulation of cell proliferation and prominent karyomegaly indicative of blocked nuclear division during mitosis. Based on these observations, it has been suggested that disruption of mitosis by OTA may be the principal cause of cell death and subsequent trigger for cell proliferation to compensate for cell loss.

View Article and Find Full Text PDF

The kidney is one of the main targets of xenobiotic-induced toxicity, but early detection of renal damage is difficult. Recently, several novel biomarkers of nephrotoxicity have been identified by transcription profiling, including kidney injury molecule-1 (Kim-1), lipocalin-2, tissue inhibitor of metalloproteinases-1 (Timp-1), clusterin, osteopontin (OPN), and vimentin, and suggested as sensitive endpoints for acute kidney injury in vivo. However, it is not known if these cellular marker molecules may also be useful to predict chronic nephrotoxicity or to detect nephrotoxic effects in vitro.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is nephrotoxic and a potent renal carcinogen. Male rats are most susceptible to OTA toxicity, and chronic administration of OTA (70 and 210 microg/kg bw) for 2 years has been shown to induce high incidences of adenomas and carcinomas arising from the straight segment of the proximal tubule epithelium. In contrast, treatment with a lower dose of 21 microg/kg bw did not result in increased tumor rates, suggesting a nonlinear dose response for renal tumor formation by OTA.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is a potent nephrotoxin and causes high incidences of renal tumors in rodents. The molecular events leading to tumor formation by OTA are not well defined. Early pathological changes observed in kidneys of rats treated with OTA in vivo include frequent mitotic and abnormally enlarged cells, detachment of tubule cells, and apoptosis within the S3 segment of the proximal tubule, suggesting that OTA may interfere with molecules involved in the regulation of cell division and apoptosis.

View Article and Find Full Text PDF