Micro- and nanoplastic particles have been detected in most environmental compartments. The presence of microplastics in the remote marine atmosphere and close to large lakes suggests bubble mediated water-air transfer as a source of airborne microplastics, however, quantitative estimates of plastic emission from surface waters remain uncertain. In this work, we elucidate the emission of submicron polystyrene nanospheres by bubble bursting in a laboratory setting from low salinity waters (salinity 0-1.
View Article and Find Full Text PDFMicroplastic is ubiquitous in the environment. Recently it was discovered that microplastic (MP, 1 μm-5 mm) contamination is present in the atmosphere where it can be transported over long distances and introduced to remote pristine environments. Sources, concentration levels, and transportation pathways of MP are still associated with large uncertainties.
View Article and Find Full Text PDFAerosol particles with rare specific properties act as nuclei for ice formation. The presence of ice nucleating particles in the atmosphere leads to heterogeneous freezing at warm temperatures and thus these particles play an important role in modulating microphysical properties of clouds. This work presents an ice nucleation cold stage instrument for measuring the concentration of ice nucleating particles in liquids.
View Article and Find Full Text PDFThe role of airborne nanoparticles in atmospheric chemistry and public health is largely controlled by particle size, morphology, surface composition, and coating. Aerosol mass spectrometry provides real-time chemical characterization of submicron atmospheric particles, but analysis of nanoplastics in complex aerosol mixtures such as sea spray is severely limited by challenges associated with separation and ionization of the aerosol matrix. Here we characterize the internal and external mixing state of synthetic sea spray aerosols spiked with 150 nm nanoplastics.
View Article and Find Full Text PDFRecently, hydroperoxy amides were identified as major products of OH-initiated autoxidation of tertiary amines in the atmosphere. The formation mechanism is analogous to that found for ethers and sulfides but substantially faster. However, the atmospheric fate of the hydroperoxy amides remains unknown.
View Article and Find Full Text PDFAutoxidation has been acknowledged as a major oxidation pathway in a broad range of atmospherically important compounds including isoprene and monoterpenes. More recently, autoxidation has also been identified as central and even dominant in the atmospheric oxidation of the rather small nonhydrocarbons dimethyl sulfide (DMS) and trimethylamine (TMA). Here, we find even faster autoxidation in the aliphatic amine triethylamine (TEA).
View Article and Find Full Text PDFOrganic hydrotrioxides (ROOOH) are known to be strong oxidants used in organic synthesis. Previously, it has been speculated that they are formed in the atmosphere through the gas-phase reaction of organic peroxy radicals (RO) with hydroxyl radicals (OH). Here, we report direct observation of ROOOH formation from several atmospherically relevant RO radicals.
View Article and Find Full Text PDFFourier transform infrared spectroscopy has been used to follow the reaction of CHOCFCHF with either Cl or OH radicals within a photoreactor. Rate constants of (OH + CHOCFCHF) = (2.25 ± 0.
View Article and Find Full Text PDF