A correlation between the absolute configuration and chiroptical properties of nonracemic 1,6,7-trisubstituted 2,3-dihydro-1H,5H-pyrazolo[1,2-a]pyrazoles was studied. A series of 16 novel representatives were prepared by Cu-catalyzed [3 + 2] cycloadditions of racemic (Z)-2-benzylidene-5-oxopyrazolidin-2-ium-1-ides to tert-butyl (S)-(3-oxopent-4-yn-2-yl)carbamate, and their structures were determined by NMR, VCD, ECD, and X-ray diffraction. A clear correlation between the sign of specific rotation and configuration at position C(1) allows for easy determination of the absolute configuration of 1,6,7-trisubstituted 2,3-dihydro-1H,5H-pyrazolo[1,2-a]pyrazoles by ECD and NMR.
View Article and Find Full Text PDFTwo cyclic azomethine imines, 7-methyl- and 7-phenyl-2-oxo-Δ-hexahydropyrazolo[1,5-a]pyridin-8-ium-1-ide, were prepared in seven steps from the respective commercially available δ-keto acids. The addition of Grignard reagents followed by N-alkylation at position 1 afforded the 1,7,7-trisubstituted hexahydropyrazolo[1,5-a]pyridin-2(1H)-ones, whereas 1,3-dipolar cycloadditions of these dipoles to typical acetylenic and olefinic dipolarophiles gave 4a-substituted 2a,2a-diazacyclopenta[cd]indene derivatives as the first representatives of a novel heterocyclic system. Regio- and stereoselectivity as well as the mechanism of these [3 + 2]-cycloadditions were evaluated using computational and experimental methods.
View Article and Find Full Text PDFA series of 16 copper-catalyzed azomethine imine-alkyne cycloaddition (CuAIAC) reactions between four pyrazolidinone-1-azomethine imines and four terminal ynones gave the corresponding fluorescent cycloadducts as bimane analogues in very high yields. The applicability of CuAIAC was demonstrated by the fluorescent labeling of functionalized polystyrene and by using Cu-C and Cu-Fe as catalysts. Experimental evidence, kinetic measurements, and correlation between a clean catalyst surface and the reaction rate are in agreement with a homotopic catalytic system with catalytic Cu(I)-acetylide formed from Cu(0) by "in situ" oxidation.
View Article and Find Full Text PDF