Publications by authors named "Eva Porlan"

In the adult mammalian brain, neural stem cells (NSCs) located in highly restricted niches sustain the generation of new neurons that integrate into existing circuits. A reduction in adult neurogenesis is linked to ageing and neurodegeneration, whereas dysregulation of proliferation and survival of NSCs have been hypothesized to be at the origin of glioma. Thus, unravelling the molecular underpinnings of the regulated activation that NSCs must undergo to proliferate and generate new progeny is of considerable relevance.

View Article and Find Full Text PDF

Cell differentiation involves profound changes in global gene expression that often has to occur in coordination with cell cycle exit. Because cyclin-dependent kinase inhibitor p27 reportedly regulates proliferation of neural progenitor cells in the subependymal neurogenic niche of the adult mouse brain, but can also have effects on gene expression, we decided to molecularly analyze its role in adult neurogenesis and oligodendrogenesis. At the cell level, we show that p27 restricts residual cyclin-dependent kinase activity after mitogen withdrawal to antagonize cycling, but it is not essential for cell cycle exit.

View Article and Find Full Text PDF

Alteration of centrosome function and dynamics results in major defects during chromosome segregation and is associated with primary autosomal microcephaly (MCPH). Despite the knowledge accumulated in the last few years, why some centrosomal defects specifically affect neural progenitors is not clear. We describe here that the centrosomal kinase PLK1 controls centrosome asymmetry and cell fate in neural progenitors during development.

View Article and Find Full Text PDF

Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly.

View Article and Find Full Text PDF

In the mammalian adult brain, neural stem cells persist in neurogenic niches. The subependymal zone is the most prolific neurogenic niche in adult rodents, where residing stem cells generate large numbers of immature neurons that migrate into the olfactory bulb, where they differentiate into different types of interneurons. Subependymal neural stem cells derive from embryonic radial glia and retain some of their features like apico-basal polarity, with apical processes piercing the ependymal layer, and a basal process contacting blood vessels, constituting an epithelial niche.

View Article and Find Full Text PDF

We used proximity-dependent biotin identification (BioID) to find proteins that potentially interact with the major glial glutamate transporter, GLT-1, and we studied how these interactions might affect its activity. GTPase Rac1 was one protein identified, and interfering with its GTP/GDP cycle in mixed primary rat brain cultures affected both the clustering of GLT-1 at the astrocytic processes and the transport kinetics, increasing its uptake activity at low micromolar glutamate concentrations in a manner that was dependent on the effector kinase PAK1 and the actin cytoskeleton. Interestingly, the same manipulations had a different effect on another glial glutamate transporter, GLAST, inhibiting its activity.

View Article and Find Full Text PDF

Relatively quiescent somatic stem cells support life-long cell renewal in most adult tissues. Neural stem cells in the adult mammalian brain are restricted to two specific neurogenic niches: the subgranular zone of the dentate gyrus in the hippocampus and the ventricular-subventricular zone (V-SVZ; also called subependymal zone or SEZ) in the walls of the lateral ventricles. The development of in vivo gene transfer strategies for adult stem cell populations (i.

View Article and Find Full Text PDF

Interactions of adult neural stem cells (NSCs) with supportive vasculature appear critical for their maintenance and function, although the molecular details are still under investigation. Neurotrophin (NT)-3 belongs to the NT family of trophic factors, best known for their effects in promoting neuronal survival. Here we show that NT-3 produced and secreted by endothelial cells of brain and choroid plexus capillaries is required for the quiescence and long-term maintenance of NSCs in the mouse subependymal niche.

View Article and Find Full Text PDF

The identification of mechanisms that maintain stem cell niche architecture and homeostasis is fundamental to our understanding of tissue renewal and repair. Cell adhesion is a well-characterized mechanism for developmental morphogenetic processes, but its contribution to the dynamic regulation of adult mammalian stem cell niches is still poorly defined. We show that N-cadherin-mediated anchorage of neural stem cells (NSCs) to ependymocytes in the adult murine subependymal zone modulates their quiescence.

View Article and Find Full Text PDF

The E3-ubiquitin ligase APC/C-Cdh1 is essential for endoreduplication but its relevance in the mammalian mitotic cell cycle is still unclear. Here we show that genetic ablation of Cdh1 in the developing nervous system results in hypoplastic brain and hydrocephalus. These defects correlate with enhanced levels of Cdh1 substrates and increased entry into the S phase in neural progenitors.

View Article and Find Full Text PDF

Relative quiescence and self renewal are defining features of adult stem cells, but their potential coordination remains unclear. Subependymal neural stem cells (NSCs) lacking cyclin-dependent kinase (CDK) inhibitor (CKI) 1a (p21) exhibit rapid expansion that is followed by their permanent loss later in life. Here we demonstrate that transcription of the gene encoding bone morphogenetic protein 2 (Bmp2) in NSCs is under the direct negative control of p21 through actions that are independent of CDK.

View Article and Find Full Text PDF

In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors.

View Article and Find Full Text PDF

Stem cells maintain their self-renewal and multipotency capacities through a self-organizing network of transcription factors and intracellular pathways activated by extracellular signaling from the microenvironment or "niche" in which they reside in vivo. In the adult mammalian brain new neurons continue to be generated throughout life of the organisms and this lifelong process of neurogenesis is supported by a reservoir of neural stem cells in the germinal regions. The discovery of adult neurogenesis in the mammalian brain has sparked great interest in defining the conditions that guide neural stem cell (NSC) maintenance and differentiation into the great variety of neuronal and glial subtypes.

View Article and Find Full Text PDF

Stem cell division can result in two sibling cells exhibiting differential mitogenic and self-renewing potential. Here, we present evidence that the dual-specificity kinase Dyrk1A is part of a molecular pathway involved in the regulation of biased epidermal growth factor receptor (EGFR) signaling in the progeny of dividing neural stem cells (NSC) of the adult subependymal zone (SEZ). We show that EGFR asymmetry requires regulated sorting and that a normal Dyrk1a dosage is required to sustain EGFR in the two daughters of a symmetrically dividing progenitor.

View Article and Find Full Text PDF

Thyroid hormone receptors (TRs) are members of the ligand-inducible transcription factor superfamily. The two major functional TRs (alpha1 and beta1) have different spatial and temporal expression patterns and specific physiological functions for these isoforms are now starting to emerge. By expressing these TR isoforms individually in Swiss 3T3 fibroblasts, we found that TRbeta1 expression, in the absence of hormone, provokes a proliferation arrest in G0/G1, lengthening the cycling time.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionb96vqke78cfgbukfq4unfoevormejgs7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once