In recent years, the demand for lithium-ion batteries (LIBs) has been increasing rapidly. Conventional recycling strategies (based on pyro- and hydrometallurgy) are damaging for the environment and more sustainable methods need to be developed. Bioleaching is a promising environmentally friendly approach that uses microorganisms to solubilize metals.
View Article and Find Full Text PDFArsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution.
View Article and Find Full Text PDFThe demand for lithium-ion batteries (LIBs) has dramatically increased in recent years due to their application in various electronic devices and electric vehicles (EVs). Great amount of LIB waste is generated, most of which ends up in landfills. LIB wastes contain substantial amounts of critical metals (such as Li, Co, Ni, Mn, and Cu) and can therefore serve as valuable secondary sources of these metals.
View Article and Find Full Text PDFOver the past 100 years, extensive oxidation of As-bearing sulfide-rich tailings from the abandoned Long Lake Gold Mine (Canada) has resulted in the formation of acid mine drainage (pH 2.0-3.9) containing high concentrations of dissolved As (∼400 mg L), SO, Fe and other metals.
View Article and Find Full Text PDFThe Northwest Tailings Containment Area at the inactive Giant Mine (Canada) contains a complex mixture of arsenic-containing substances, including flotation tailings (84.8 wt%; with 0.4 wt% residual S), roaster calcine wastes (14.
View Article and Find Full Text PDFThe microbial ecology of acidic mine and sulfide cave ecosystems is well characterised with respect to aquatic communities, typically revealing low taxonomic complexity and dominance by a relatively limited number of cosmopolitan acidophilic bacterial and archaeal taxa. Whilst pH, temperature, and geochemistry are recognised drivers of diversity in these ecosystems, the specific question of a possible influence of substratum mineralogy on microbial community composition remains unanswered. Here we address this void, using 81 subterranean mineral samples from a low temperature abandoned, acidic, sulfide ore mine system at Mynydd Parys (Parys Mountain in English), Wales, UK.
View Article and Find Full Text PDFTen strains of extremely acidophilic bacteria, isolated from different environments form a distinct monophyletic clade within the phylum Firmicutes. Comparison of complete genomes of the proposed type strains confirm that they comprise two genera (proposed names Sulfoacidibacillus and Ferroacidibacillus), and at least three species (Sulfoacidibacillus ferrooxidans, Sulfoacidibacillus thermotolerans and Ferroacidibacillus organovorans). The bacterial strains share some physiological traits, including catalysing the dissimilatory oxidation and reduction of iron, and in being obligately heterotrophic.
View Article and Find Full Text PDFMining activities expose sulfidic minerals including arsenopyrite (FeAsS) to acid mine drainage (AMD). The subsequent release of toxic arsenic (As) can have great negative implications for the environment and human health. This study investigated the evolution of secondary products and As speciation transformations during arsenopyrite bio-oxidation in AMD collected from a polymetallic mine.
View Article and Find Full Text PDFMicrobiol Resour Announc
August 2022
The draft whole-genome sequence of the extremely acidophilic and novel strain SAB is reported. The genome comprises 3.3 Mbp and has a GC content of 43.
View Article and Find Full Text PDFMicrobially mediated sulfate reduction is a promising cost-effective and sustainable process utilized in permeable reactive barriers (PRB) and constructed wetlands to treat mine wastewater. Laboratory batch experiments were performed to evaluate nickel (Ni) isotope fractionation associated with precipitation of Ni-sulfides in the presence of the sulfate-reducing bacterium (SRB) (DSM-642). Precipitates were collected anaerobically and characterized by synchrotron powder X-ray diffraction (PXRD), scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFThe Strathcona Waste Water Treatment System (SWWTS; Sudbury, ON, Canada) has received mill tailings from Ni/Cu ore processing from 1970 to present. Demonstration-scale, multi-layer cover systems were installed on selected tailings deposition cells at the SWWTS. The cover systems are comprised of an upper layer of organic carbon-rich material, composed of a layer biosolids fertilizer along with composted municipal food and yard waste, then a layer of desulfurized, fine-grained tailings.
View Article and Find Full Text PDFAcid mine drainage and the associated contaminants, including As and metals, are ongoing environmental issues. Passive remediation technologies have the potential to remove As from mine waste effluents. A series of laboratory column experiments was conducted to evaluate the effectiveness of varying mixtures of organic carbon (OC), zero-valent iron (ZVI), and limestone for the treatment of As, metals, SO, and acidity in groundwater from an abandoned gold mine.
View Article and Find Full Text PDFHydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on growing on hydrogen, and a respiratory model was proposed.
View Article and Find Full Text PDFThe abandoned Kam Kotia Mine (Canada) is undergoing remediation. A geosynthetic-clay-liner (GCL) cover system was installed in the Northern Impounded Tailings (NIT) area in 2008 to isolate acid-generating tailings from water and oxygen and to mitigate sulfide oxidation. The cover system includes a vegetated uppermost soil layer underlain by a granular protective layer (sand), a clay moisture-retaining layer, a GCL, a granular capillary-break material (cushion sand), and a crushed waste rock-capillary break layer installed above the tailings.
View Article and Find Full Text PDFAccording to the literature, pyrite (FeS) oxidation has been previously determined to involve thiosulfate as the first aqueous intermediate sulfur product, which is further oxidized to sulfate. In the present study, pyrite oxidation by was studied using electrochemical and metabolic approaches in an effort to extend existing knowledge on the oxidation mechanism. Due to the small surface area, the reaction rate of a compact pyrite electrode in the form of polycrystalline pyrite aggregate in suspension was very slow at a spontaneously formed high redox potential.
View Article and Find Full Text PDFExperiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (, and ), and also of iron (III) reduction by spp. under aerobic conditions. Reduction of iron (III) was found with all five species of tested, grown aerobically on elemental sulfur.
View Article and Find Full Text PDFTo clarify the pathway of anaerobic sulfur oxidation coupled with dissimilatory ferric iron reduction in Acidithiobacillus ferrooxidans strain CCM 4253 cells, we monitored their energy metabolism gene transcript profiles. Several genes encoding electron transporters involved in aerobic iron and sulfur respiration were induced during anaerobic growth of ferrous iron-grown cells. Most sulfur metabolism genes were either expressed at the basal level or their expression declined.
View Article and Find Full Text PDF