Diets that are high in fat cause over-eating and weight gain in multiple species of animals, suggesting that high dietary fat is sufficient to cause obesity. However, high-fat diets are typically provided freely to animals in obesity experiments, so it remains unclear if high-fat diets would still cause obesity if they required more effort to obtain. We hypothesized that unrestricted and easy access is necessary for high-fat diet induced over-eating, and the corollary that requiring mice to perform small amounts of work to obtain high-fat diet would reduce high-fat diet intake and associated weight gain.
View Article and Find Full Text PDFObjective: Exposure to 60% high fat diet (HFD) leads to a robust consummatory preference over well-balanced chow standard diet (SD) when mice are presented with a choice. This passive HFD-induced SD devaluation following HFD challenge and withdrawal is highlighted by the significant reduction in SD food intake even in states of caloric deprivation. The elements of HFD that lead to this SD depreciation remains unclear.
View Article and Find Full Text PDFAcross mammalian species, new mothers undergo considerable behavioral changes to nurture their offspring and meet the caloric demands of milk production. While many neural circuits underlying feeding and parenting behaviors are well characterized, it is unclear how these different circuits interact and adapt during lactation. Here, we characterized the transcriptomic changes in the arcuate nucleus (ARC) and the medial preoptic area (MPOA) of the mouse hypothalamus in response to lactation and hunger.
View Article and Find Full Text PDFLiraglutide and other agonists of the glucagon-like peptide 1 receptor (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons which inhibit hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nuclei transcriptomics.
View Article and Find Full Text PDFAnorexia nervosa (AN) is a debilitating and deadly disease characterized by low body mass index due to diminished food intake, and oftentimes concurrent hyperactivity. A high percentage of AN behavioral and metabolic phenotypes can be replicated in rodents given access to a voluntary running wheel and subject to food restriction, termed activity-based anorexia (ABA). Despite the well-documented bodyweight loss observed in AN human patients and ABA rodents, much less is understood regarding the neurobiological underpinnings of these maladaptive behaviors.
View Article and Find Full Text PDF