Publications by authors named "Eva Nozik-Grayck"

ROCK, one of the downstream regulators of Rho, controls actomyosin cytoskeleton organization, stress fiber formation, smooth muscle contraction, and cell migration. ROCK plays an important role in the pathologies of cerebral and coronary vasospasm, hypertension, cancer, and arteriosclerosis. Pharmacological-induced systemic inhibition of ROCK affects both the pathological and physiological functions of Rho-kinase, resulting in hypotension, increased heart rate, decreased lymphocyte count, and eventually cardiovascular collapse.

View Article and Find Full Text PDF

Poor maternal diet increases the risk of obesity and type 2 diabetes in offspring, adding to the ever-increasing prevalence of these diseases. In contrast, we find that maternal exercise improves the metabolic health of offspring, and here, we demonstrate that this occurs through a vitamin D receptor-mediated increase in placental superoxide dismutase 3 (SOD3) expression and secretion. SOD3 activates an AMPK/TET signaling axis in fetal offspring liver, resulting in DNA demethylation at the promoters of glucose metabolic genes, enhancing liver function, and improving glucose tolerance.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a devastating pulmonary disease with significant in-hospital mortality and is the leading cause of death in COVID-19 patients. Excessive leukocyte recruitment, unregulated inflammation, and resultant fibrosis contribute to poor ARDS outcomes. Nanoparticle technology with cerium oxide nanoparticles (CNP) offers a mechanism by which unstable therapeutics such as the anti-inflammatory microRNA-146a can be locally delivered to the injured lung without systemic uptake.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) affects more women than men, although affected females tend to survive longer than affected males. This sex disparity in PAH is postulated to stem from the diverse roles of sex hormones in disease etiology. In animal models, estrogens appear to be implicated not only in pathologic remodeling of pulmonary arteries, but also in protection against right ventricular (RV) hypertrophy.

View Article and Find Full Text PDF

Maternal selenium (Se) deficiency is associated with decreased neonatal Se levels, which increases the risk for neonatal morbidities. There is a hierarchy to selenoprotein expression after Se deficiency in adult rodents, depending on the particular protein and organ evaluated. However, it is unknown how limited Se supply during pregnancy impacts neonatal selenoprotein expression.

View Article and Find Full Text PDF

Background: Selenium (Se) levels decrease in the circulation during acute inflammatory states and sepsis, and are inversely associated with morbidity and mortality. A more specific understanding of where selenoproteins and Se processing are compromised during insult is needed. We investigated the acute signaling response in selenoenzymes and Se processing machinery in multiple organs after innate immune activation in response to systemic lipopolysaccharide (LPS).

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates how altering the expression of the enzyme CPT1A impacts prostate cancer cell metabolism, revealing changes in cellular pathways linked to stress, serine production, and lipid breakdown.
  • - Analysis showed that higher CPT1A levels led to increased acyl-carnitines and ROS, while reducing androgen response, suggesting a shift in cancer cell metabolism that may promote disease progression.
  • - Findings indicate that targeting lipid catabolic pathways could be a potential therapeutic strategy for treating hormone-dependent cancers, as advanced prostate cancer shows worse survival rates with increased lipid catabolism and lower androgen response.
View Article and Find Full Text PDF

Currently used animal and cellular models for pulmonary arterial hypertension (PAH) only partially recapitulate its pathophysiology in humans and are thus inadequate in reproducing the hallmarks of the disease, inconsistent in portraying the sex-disparity, and unyielding to combinatorial study designs. Here we sought to deploy the ingenuity of microengineering in developing and validating a tissue chip model for human PAH. We designed and fabricated a microfluidic device to emulate the luminal, intimal, medial, adventitial, and perivascular layers of a pulmonary artery.

View Article and Find Full Text PDF

Diabetes mellitus affects 451 million people worldwide, and people with diabetes are 3-5 times more likely to develop cardiovascular disease. In vascular tissue, mitochondrial function is important for vasoreactivity. Diabetes-mediated generation of excess reactive oxygen species (ROS) may contribute to vascular dysfunction via damage to mitochondria and regulation of endothelial nitric oxide synthase (eNOS).

View Article and Find Full Text PDF

Oxidative stress is a key contributor to the development of dysregulated inflammation in acute lung injury (ALI). A naturally occurring single nucleotide polymorphism in the key extracellular antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), results in an arginine to glycine substitution (R213G) that promotes resolution of inflammation and protection against bleomycin-induced ALI. Previously we found that mice harboring the R213G mutation in EC-SOD exhibit a transcriptomic profile consistent with a striking suppression of inflammatory and immune pathways 7 days postbleomycin.

View Article and Find Full Text PDF

The HIV-infected population is at a dramatically increased risk of developing pulmonary arterial hypertension (PAH), a devastating and fatal cardiopulmonary disease that is rare amongst the general population. It is increasingly apparent that PAH is a disease with complex and heterogeneous cellular and molecular pathologies, and options for therapeutic intervention are limited, resulting in poor clinical outcomes for affected patients. A number of soluble HIV factors have been implicated in driving the cellular pathologies associated with PAH through perturbations of various signaling and regulatory networks of uninfected bystander cells in the pulmonary vasculature.

View Article and Find Full Text PDF

Fibrotic disorders account for over one third of mortalities worldwide. Despite great efforts to study the cellular and molecular processes underlying fibrosis, there are currently few effective therapies. Dual-stage polymerization reactions are an innovative tool for recreating heterogeneous increases in extracellular matrix (ECM) modulus, a hallmark of fibrotic diseases in vivo.

View Article and Find Full Text PDF

Serotonin (5-HT) contributes to the pathogenesis of experimental neonatal pulmonary hypertension (PH) associated with bronchopulmonary dysplasia (BPD). Platelets are the primary source of circulating 5-HT and is released upon platelet activation. Platelet transfusions are associated with neonatal mortality and increased rates of BPD.

View Article and Find Full Text PDF

Chronic hypoxia leads to pathologic remodeling of the pulmonary vasculature and pulmonary hypertension (PH). The antioxidant enzyme extracellular superoxide dismutase (SOD3) protects against hypoxia-induced PH. Hyaluronan (HA), a ubiquitous glycosaminoglycan of the lung extracellular matrix, is rapidly recycled at sites of vessel injury and repair.

View Article and Find Full Text PDF

Clinical studies have demonstrated a strong association between both acute toxic exposure and the repetitive, chronic exposure to acetaminophen (APAP) with pulmonary dysfunction. However, the mechanisms underlying this association are unknown. Preclinical reports have demonstrated that significant bronchiolar injury occurs with toxic APAP exposure, but very little information exists on how the distal lung is affected.

View Article and Find Full Text PDF

A human single nucleotide polymorphism (SNP) in the matrix-binding domain of extracellular superoxide dismutase (EC-SOD), with arginine to glycine substitution at position 213 (R213G), redistributes EC-SOD from the matrix into extracellular fluids. We reported that, following bleomycin (bleo), knockin mice harboring the human R213G SNP (R213G mice) exhibit enhanced resolution of inflammation and protection against fibrosis, compared with wild-type (WT) littermates. In this study, we tested the hypothesis that the EC-SOD R213G SNP promotes resolution accelerated apoptosis of recruited alveolar macrophage (AM).

View Article and Find Full Text PDF

Circulating macrophages recruited to the lung contribute to pulmonary vascular remodeling in various forms of pulmonary hypertension (PH). In this study we investigated a macrophage phenotype characterized by intracellular iron accumulation and expression of antioxidant (HO-1), vasoactive (ET-1), and proinflammatory (IL-6) mediators observed in the lung tissue of deceased sickle cell disease (SCD) patients with diagnosed PH. To this end, we evaluated an established rat model of group 5 PH that is simultaneously exposed to free hemoglobin (Hb) and hypobaric hypoxia (HX).

View Article and Find Full Text PDF

Aging and chronic inflammation are independent risk factors for the development of atherothrombosis and cardiovascular disease. We hypothesized that aging-associated inflammation promotes the development of platelet hyperreactivity and increases thrombotic risk during aging. Functional platelet studies in aged-frail adults and old mice demonstrated that their platelets are hyperreactive and form larger thrombi.

View Article and Find Full Text PDF

Bleomycin is a commonly used cancer therapeutic that is associated with oxidative stress leading to pulmonary toxicity. Bleomycin has been used in animal studies to model pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary hypertension secondary to interstitial lung disease. The toxicity with bleomycin is initiated by direct oxidative damage, which then leads to subsequent inflammation and fibrosis mediated by generation of both extracellular ROS and intracellular ROS.

View Article and Find Full Text PDF

Chronic HIV infection in the era of anti-retroviral therapy is associated with dramatically increased risk of developing severe cardio pulmonary disease. Common to these diseases is increased oxidative burden and chronic inflammation despite low viremia and restoration of CD4 T-cell levels. Soluble viral factors are heavily implicated in these disease processes, including the HIV Transactivator of Transcription (Tat).

View Article and Find Full Text PDF

Here, we sought to elucidate the role of CAR (a cyclic peptide) in the accumulation and distribution of fasudil, a drug for pulmonary arterial hypertension (PAH), in rat lungs and in producing pulmonary specific vasodilation in PAH rats. As such, we prepared liposomes of fasudil and CAR-conjugated liposomal fasudil and assessed the liposomes for CAR conjugation, physical properties, entrapment efficiencies, in vitro release profiles, and stabilities upon incubation in cell culture media, storage, and aerosolization. We also studied the cellular uptake of fasudil in different formulations, quantified heparan sulfate (HS) in pulmonary arterial smooth muscle cells (PASMCs), and investigated the distribution of the liposomes in the lungs of PAH rats.

View Article and Find Full Text PDF

Oxidative stress is well recognized to contribute to the pathogenesis of diverse diseases, including the devastating disease of the lung's blood vessels, pulmonary arterial hypertension (PAH), however, antioxidant-based therapies have been overall disappointing. With the evolution of the field of redox biology, it is now becoming clear that redox reactions are highly selective and targeted, allowing for precise control of redox-regulated signaling in health and disease. This special Forum of the journal describes the current state of knowledge on the regulation of redox-regulated signaling during the development of pulmonary vascular disease, focusing on distinct compartmentalized mechanisms outside and within the cell, including regulation of extracellular and intracellular membrane receptors and channels; responses to changes in biomechanical forces; intracellular thiol redox control; regulation of the nuclear transcription factor, peroxisome proliferator-activated receptor-γ; and regulation of mitochondrial metabolism.

View Article and Find Full Text PDF

The accurate and specific detection of reactive oxygen species (ROS) in different cellular and tissue compartments is essential to the study of redox-regulated signaling in biological settings. Electron paramagnetic resonance spectroscopy (EPR) is the only direct method to assess free radicals unambiguously. Its advantage is that it detects physiologic levels of specific species with a high specificity, but it does require specialized technology, careful sample preparation, and appropriate controls to ensure accurate interpretation of the data.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncpi5eh1t1lgeb5934ea6ak94u0vcvhgb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once