Publications by authors named "Eva Muchova"

High-resolution carbon K-edge X-ray photoelectron, X-ray absorption, non-resonant and resonant Auger spectra are presented of gas phase -1,3-butadiene alongside a detailed theoretical analysis utilising nuclear ensemble approaches and vibronic models to simulate the spectroscopic observables. The resonant Auger spectra recorded across the first pre-edge band reveal a complex evolution of different electronic states which remain relatively well-localised on the edge or central carbon sites. The results demonstrate the sensitivity of the resonant Auger observables to the weighted contributions from multiple electronic states.

View Article and Find Full Text PDF

Compaction of dehydroxylated MgO nanocrystal powders produces adsorbed oxygen radicals with characteristic UV-vis spectroscopic fingerprints. Identical absorption bands arise upon UV excitation in an oxygen atmosphere but in the absence of uniaxial pressure. Photophysical calculations on MgO gas-phase clusters reveal that the observed optical transitions at 4.

View Article and Find Full Text PDF

Adamantane, the smallest diamondoid molecule with a symmetrical cage, contains two distinct carbon sites, CH and CH2. The ionization/excitation of the molecule leads to the cage opening and strong structural reorganization. While theoretical predictions suggest that the carbon site CH primarily causes the cage opening, the role of the other CH2 site remains unclear.

View Article and Find Full Text PDF

Spin-orbit coupling between electronic states of different multiplicity can be strongly coupled to molecular vibrations, and this interaction is becoming recognized as an important mechanism for controlling the course of photochemical reactions. Here, we show that the involvement of spin-vibronic coupling is essential for understanding the photophysics and photochemistry of heptamethine cyanines (Cy7), bearing iodine as a heavy atom in the C3' position of the chain and/or a 3-indolium core, as potential triplet sensitizers and singlet oxygen producers in methanol and aqueous solutions. The sensitization efficiency was found to be an order of magnitude higher for the chain-substituted than the 3-indolium core-substituted derivatives.

View Article and Find Full Text PDF

Carbon K-edge resonant Auger spectra of gas-phase allene following excitation of the pre-edge 1s → π* transitions are presented and analysed with the support of EOM-CCSD/cc-pVTZ calculations. X-Ray absorption (XAS), X-ray photoelectron (XPS), valence band and non-resonant Auger spectra are also reanalysed with a series of computational approaches. The results presented demonstrate the importance of including nuclear ensemble effects for simulating X-ray observables and as an effective strategy for capturing Jahn-Teller effects in spectra.

View Article and Find Full Text PDF

We report the first nitrogen 1s Auger-Meitner electron spectrum from a liquid ammonia microjet at a temperature of ∼223 K (-50 °C) and compare it with the simultaneously measured spectrum for gas-phase ammonia. The spectra from both phases are interpreted with the assistance of high-level electronic structure and molecular dynamics calculations. In addition to the regular Auger-Meitner-electron features, we observe electron emission at kinetic energies of 374-388 eV, above the leading Auger-Meitner peak (3a ).

View Article and Find Full Text PDF

Non-local analogues of Auger decay are increasingly recognized as important relaxation processes in the condensed phase. Here, we explore non-local autoionization, specifically Intermolecular Coulombic Decay (ICD), of a series of aqueous-phase isoelectronic cations following 1s core-level ionization. In particular, we focus on Na, Mg, and Al ions.

View Article and Find Full Text PDF

Solvation free energies can be advantageously estimated by cluster-continuum approaches. They proved useful especially for systems with high charge density. However, the clusters are assumed to be single minimum rigid species.

View Article and Find Full Text PDF
Article Synopsis
  • Heptamethine cyanines (Cy7) are important fluorophores used in bioimaging and chemistry.
  • A study analyzed different Cy7 derivatives with various substituents, revealing that minor changes can significantly affect their light absorption and photophysical properties.
  • Understanding the relationship between structure and properties will help create Cy7 compounds optimized for specific uses like fluorescent probes, photodynamic therapy, and singlet-oxygen detection.
View Article and Find Full Text PDF

We discuss a fragment-based QM:QM scheme as a practical way to access the energetics of vertical electronic processes in the condensed phase. In the QM:QM scheme, we decompose the large molecular system into small fragments, which interact solely electrostatically. The energies of the fragments are calculated in a self-consistent field generated by the other fragments and the total energy of the system is calculated as a sum of the fragment energies.

View Article and Find Full Text PDF

Ions have a profound effect on the geometrical structure of liquid water and an aqueous environment is known to change the electronic structure of ions. Here we combine photoelectron spectroscopy measurements from liquid microjets with molecular dynamical and quantum chemical calculations to address the reverse question, to what extent do ions affect the electronic structure of liquid water? We study aqueous solutions of sodium iodide (NaI) over a wide concentration range, from nearly pure water to 8 M solutions, recording spectra in the 5 to 60 eV binding energy range to include all water valence and the solute Na 2p, I 4d, and I 5p orbital ionization peaks. We observe that the electron binding energies of the solute ions change only slightly as a function of electrolyte concentration, less than 150 ± 60 meV over an ∼8 M range.

View Article and Find Full Text PDF

The topical review focuses on calculating ionization energies (IE), or electronic polarons in quasi-particle terminology, in large disordered systems, e.g. for a solute dissolved in a molecular solvent.

View Article and Find Full Text PDF

The applicability range of density functional theory (DFT) can be improved with no additional parametrization by imposing some exact conditions. Enforcing equality between the orbital energy of the highest occupied Kohn-Sham orbital and ionization energy, determined from the total energy difference between neutral and ionized states (ΔKS), leads to the concept of optimally tuned range-separated hybrid functionals. Here, we present an alternative tuning scheme for range-separated hybrid functionals based on enforcing the equality between the ΔKS ionization energy and the ionization energy calculated by means of the time-dependent DFT using the concept of ionization as an excitation to the distant center (OT-IEDC scheme).

View Article and Find Full Text PDF

Photoionization is at the heart of X-ray photoelectron spectroscopy (XPS), which gives access to important information on a sample's local chemical environment. Local and non-local electronic decay after photoionization-in which the refilling of core holes results in electron emission from either the initially ionized species or a neighbour, respectively-have been well studied. However, electron-transfer-mediated decay (ETMD), which involves the refilling of a core hole by an electron from a neighbouring species, has not yet been observed in condensed phase.

View Article and Find Full Text PDF

We designed and studied the structure, dynamics, and photochemistry of photoswitchable reverse micelles (RMs) composed of azobenzene-containing ammonium amphiphile 1 and water in chloroform at room and subzero temperatures by NMR spectroscopy and molecular dynamics simulations. The NMR and diffusion coefficient analyses showed that micelles containing either the E or Z configuration of 1 are stable at room temperature. Depending on the water-to-surfactant molar ratio, the size of the RMs remains unchanged or is slightly reduced because of the partial loss of water from the micellar cores upon extensive E → Z or Z → E photoisomerization of the azobenzene group in 1.

View Article and Find Full Text PDF

We present a computational protocol for modeling valence photoemission spectra of liquids. We use water as an experimentally well-characterized model system, and we represent its liquid state by larger finite-sized droplets. The photoemission spectrum is evaluated for an ensemble of structures along molecular dynamics simulations.

View Article and Find Full Text PDF

The nature and stability of cetyltrimethylammonium bromide (CTAB) reverse micelles in chloroform formed above the critical micellar concentration at above- and subzero temperatures were examined by NMR and molecular dynamics simulations. The experiments showed that the supercooled micellar water pool becomes unstable upon cooling to relatively high temperatures (253 K), and smaller micelles are formed. Upon freezing at lower temperatures (233 K), micelles become completely frozen and remain intact in the solution.

View Article and Find Full Text PDF

We use molecular dynamics simulations to determine the melting point of ice I(h) for the polarizable POL3 water force field (Dang, L. X. J.

View Article and Find Full Text PDF

The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid.

View Article and Find Full Text PDF

The character of the hydrogen bonding and the excited state proton transfer (ESPT) in the model system HCN...

View Article and Find Full Text PDF