In this account, we report the development of a series of substituted cinnamic anilides that represents a novel class of mitochondrial permeability transition pore (mPTP) inhibitors. Initial class expansion led to the establishment of the basic structural requirements for activity and to the identification of derivatives with inhibitory potency higher than that of the standard inhibitor cyclosporine-A (CsA). These compounds can inhibit mPTP opening in response to several stimuli including calcium overload, oxidative stress, and thiol cross-linkers.
View Article and Find Full Text PDFSnake presynaptic neurotoxins with phospholipase A(2) activity are potent inducers of paralysis through inhibition of the neuromuscular junction. These neurotoxins were recently shown to induce exocytosis of synaptic vesicles following the production of lysophospholipids and fatty acids and a sustained influx of Ca(2+) from the medium. Here, we show that these toxins are able to penetrate spinal cord motor neurons and cerebellar granule neurons and selectively bind to mitochondria.
View Article and Find Full Text PDFWe have investigated the mitochondrial effects of BH3I-2', Chelerythrine, and HA14-1, small organic molecules that share the ability to bind the BH3 domain of BCL-2. All compounds displayed a biphasic effect on mitochondrial respiration with uncoupling at low concentrations and respiratory inhibition at higher concentrations, the relative uncoupling potency being BH3I-2' (half-maximal uncoupling at about 80 nm) > Chelerythrine (half-maximal uncoupling at about 2 microm) > HA14-1 (half-maximal uncoupling at about 20 microm). At concentrations lower than required for uncoupling all compounds sensitized the permeability transition pore (PTP) to opening both in isolated mitochondria and intact cells.
View Article and Find Full Text PDFMethylglyoxal and synthetic glyoxal derivatives react covalently with arginine residue(s) on the mitochondrial permeability transition pore (PTP). In this study, we have investigated how the binding of a panel of synthetic phenylglyoxal derivatives influences the opening and closing of the PTP. Using both isolated mitochondria and mammalian cells, we demonstrate that the resulting arginine-phenylglyoxal adduct can lead to either suppression or induction of permeability transition, depending on the net charge and hydrogen bonding capacity of the adduct.
View Article and Find Full Text PDFDeoxynucleoside triphosphates (dNTPs) used for mitochondrial DNA replication are mainly formed by phosphorylation of deoxynucleosides imported into mitochondria from the cytosol. We earlier obtained evidence for a mitochondrial 5'-nucleotidase (dNT2) with a pronounced specificity for dUMP and dTMP and suggested that the enzyme protects mitochondrial DNA replication from excess dTTP. In humans, accumulation of dTTP causes a mitochondrial genetic disease.
View Article and Find Full Text PDF