Publications by authors named "Eva Mikics"

Traumatic experiences result in the development of posttraumatic stress disorder (PTSD) in 10-25% of exposed individuals. While human clinical studies suggest that susceptibility is potentially linked to endocannabinoid (eCB) signaling, neurobiological PTSD susceptibility factors are poorly understood. Employing a rat model of contextual conditioned fear, we characterized distinct resilient and susceptible subpopulations based on lasting generalized fear, a core symptom of PTSD.

View Article and Find Full Text PDF
Article Synopsis
  • Perinatal asphyxia (PA) significantly threatens kidney health, making it hard to diagnose and treat associated injuries, with limited long-term data available on its effects.
  • A study on 7-day-old male Wistar rats exposed to PA analyzed various molecular pathways involved in kidney damage, inflammation, and fibrosis, revealing a rise in gene expressions linked to renal injury.
  • Adult rats with a history of PA showed worsened kidney function and increased vulnerability to subsequent injuries, emphasizing that PA causes lasting kidney harm and suggesting new avenues for biomarker research.
View Article and Find Full Text PDF

Adverse social experiences during childhood increase the risk of developing aggression-related psychopathologies. The prefrontal cortex (PFC) is a key regulator of social behavior, where experience-dependent network development is tied to the maturation of parvalbumin-positive (PV+) interneurons. Maltreatment in childhood could impact PFC development and lead to disturbances in social behavior during later life.

View Article and Find Full Text PDF

Anxiety and trauma-related disorders are characterized by significant alterations in threat detection, resulting in inadequate fear responses evoked by weak threats or safety stimuli. Recent research pointed out the important role of the bed nucleus of stria terminalis (BNST) in threat anticipation and fear modulation under ambiguous threats, hence, exaggerated fear may be traced back to altered BNST function. To test this hypothesis, we chemogenetically inhibited specific BNST neuronal populations (corticotropin-releasing hormone - BNST and somatostatin - BNST expressing neurons) in a predator odor-evoked innate fear paradigm.

View Article and Find Full Text PDF

Excessive fear learning and generalized, extinction-resistant fear memories are core symptoms of anxiety and trauma-related disorders. Despite significant evidence from clinical studies reporting hyperactivity of the bed nucleus of stria terminalis (BNST) under these conditions, the role of BNST in fear learning and expression is still not clarified. Here, we tested how BNST modulates fear learning in male mice using a chemogenetic approach.

View Article and Find Full Text PDF

Forming effective responses to threatening stimuli requires the adequate and coordinated emergence of stress-related internal states. Such ability depends on early-life experiences and, in connection, the adequate formation of neuromodulatory systems, particularly serotonergic signaling. Here, we assess the serotonergic background of experience-dependent behavioral responsiveness using male and female zebrafish ().

View Article and Find Full Text PDF

Background: Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder. According to literature data, perinatal adversities might be associated with the occurrence of ADHD, but the results are inconclusive at the moment. The aim of the present study is to describe perinatal adversities in children with ADHD.

View Article and Find Full Text PDF

Larval zebrafish (Danio rerio) has the potential to supplement rodent models due to the availability of resource-efficient, high-throughput screening and high-resolution imaging techniques. Although behavioural models are available in larvae, only a few can be employed to assess anxiety. Here we present the swimming plus-maze (SPM) test paradigm, a tool to assess anxiety-related avoidance of shallow water bodies in early developmental stages.

View Article and Find Full Text PDF

Social adversities experienced in childhood can have a profound impact on the developing brain, leading to the emergence of psychopathologies in adulthood. Despite the burden this places on both the individual and society, the neurobiological aspects mediating this transition remain unclear. Recent advances in preclinical and clinical research have begun examining neuroplasticity-the nervous system's ability to form adaptive changes in response to new experience-in the context of early-life vulnerability to social adversities and plasticity-related alterations following such traumatic events.

View Article and Find Full Text PDF

Escalated or abnormal aggression induced by early adverse experiences is a growing issue of social concern and urges the development of effective treatment strategies. Here we report that synergistic interactions between psychosocial and biological factors specifically ameliorate escalated aggression induced by early adverse experiences. Rats reared in isolation from weaning until early adulthood showed abnormal forms of aggression and social deficits that were temporarily ameliorated by re-socialization, but aggression again escalated in a novel environment.

View Article and Find Full Text PDF

N-methyl-d-aspartate (NMDA) receptors are crucial synaptic elements in long-term memory formation, including the associative learning of fearful events. Although NMDA blockers were consistently shown to inhibit fear memory acquisition and recall, the clinical use of general NMDA blockers is hampered by their side effects. Recent studies revealed significant heterogeneity in the distribution and neurophysiological characteristics of NMDA receptors with different GluN2 (NR2) subunit composition, which may have differential role in fear learning and recall.

View Article and Find Full Text PDF

Rationale: Calcium-permeable (GluA2 subunit-free) AMPA receptors (CP-AMPAR) play prominent roles in fear extinction; however, no blockers of these receptors were studied in tests relevant to extinction learning so far.

Methods: The CP-AMPAR antagonist IEM-1460 was administered once before extinction trainings, which were started either 1 or 28 days after fear conditioning (FC). We used a mild extinction protocol that durably decreased but did not abolish conditioned fear.

View Article and Find Full Text PDF

The hypothalamus-pituitary-adrenal-axis is strongly controlled by the endocannabinoid system. The specific impact of enhanced 2-arachidonoylglycerol signaling on corticosterone plasma levels, however, was not investigated so far. Here we studied the effects of the recently developed monoacylglycerol lipase inhibitor JZL184 on basal and stress-induced corticosterone levels in male CD1 mice, and found that this compound dramatically increased basal levels without affecting stress responses.

View Article and Find Full Text PDF

As previously shown, rats isolated from weaning develop abnormal social and aggressive behavior characterized by biting attacks targeting vulnerable body parts of opponents, reduced attack signaling, and increased defensive behavior despite increased attack counts. Here we studied whether this form of violent aggression could be reversed by resocialization in adulthood. During the first weak of resocialization, isolation-reared rats showed multiple social deficits including increased defensiveness and decreased huddling during sleep.

View Article and Find Full Text PDF

Post-weaning social isolation in rats is believed to model symptoms of early social neglect-induced externalizing problems including aggression-related problems. We showed earlier that rats reared in social isolation were hyper-aroused during aggressive contacts, delivered substantially more attacks that were poorly signaled and were preferentially aimed at vulnerable body parts of opponents (head, throat and belly). Here we studied the neural background of this type of aggression by assessing the expression of the activation marker c-Fos in 22 brain areas of male Wistar rats submitted to resident-intruder conflicts.

View Article and Find Full Text PDF

Mechanisms underlying shock-induced conditioned fear - a paradigm frequently used to model posttraumatic stress disorder, PTSD - are usually studied shortly after shocks. Some of the brain regions relevant to conditioned fear were activated in all the c-Fos studies published so far, but the overlap between the activated regions was small across studies. We hypothesized that discrepant findings were due to dynamic neural changes that followed shocks, and a more consistent picture would emerge if consequences were studied after a longer interval.

View Article and Find Full Text PDF

Forced swim test (FST) is a widely used test for antidepressant development. Depression is a stress related disease, as hormones of the stress-axis can modify mood. However it is not clear, how the appearance of depressive-like behavior (floating) in FST is connected with changes in the stress-hormone levels.

View Article and Find Full Text PDF

We showed earlier that social isolation from weaning (a paradigm frequently used to model social neglect in children) induces abnormal forms of attack in rats, and assumed that these are associated with hyperarousal. To investigate this hypothesis, we deprived rats of social contacts from weaning and studied their behavior, glucocorticoid and autonomic stress responses in the resident-intruder paradigm at the age of 82 days. Social isolation resulted in abnormal attack patterns characterized by attacks on vulnerable targets, deficient social communication and increased defensive behaviors (defensive upright, flight, freezing).

View Article and Find Full Text PDF

N-methyl-D-asparate (NMDA)-mediated glutamatergic neurotransmission is strongly involved in the development of trauma-induced behavioral dysfunctions, and indirect evidence suggests that NR2B subunit-expressing NMDA receptors are primarily involved in this process. Earlier studies showed that NR2B blockers inhibit the acquisition of conditioned fear, a frequently used model of post-traumatic stress disorder, but their effects on the expression of conditioned fear was poorly studied. We investigated here the effects of the selective serotonin reuptake blocker, fluoxetine, the NMDA blocker, MK-801, and the NR2B subunit blocker, Ro25-6981 on the expression of conditioned fear.

View Article and Find Full Text PDF

Callous-unemotional violence associated with antisocial personality disorder is often called 'predatory' because it involves restricted intention signaling and low emotional/physiological arousal, including decreased glucocorticoid production. This epithet may be a mere metaphor, but may also cover a structural similarity at the level of the hypothalamus where the control of affective and predatory aggression diverges. We investigated this hypothesis in a laboratory model where glucocorticoid production is chronically limited by adrenalectomy with glucocorticoid replacement (ADXr).

View Article and Find Full Text PDF

We investigated the impact of electric shocks--frequently used to model post-traumatic stress disorder in rodents--on behaviors relevant to drug abuse in rats. Rats exposed to 10 shocks of 3 mA over 5 min showed a robust conditioned fear 28 days later, which confirms the traumatic nature of shock exposure. A different set of rats was studied in the conditioned place preference paradigm beginning with the 27th post-shock day.

View Article and Find Full Text PDF

Neuroanatomical findings revealed that CB1 cannabinoid and 5-HT3 receptors are coexpressed by a subtype of gamma-aminobutyric acid (GABA)ergic interneurons in the prefrontal cortex, hippocampus, and basolateral amygdala, three brain regions that are crucial for the control of anxiety. In these regions, serotonergic inputs increase GABA release through 5-HT3 receptors, the phenomenon being retrogradely controlled by cannabinoid neurotransmission. This suggests a functional interaction between 5-HT3 neurotransmission and CB1 signaling.

View Article and Find Full Text PDF

Substance P and its tachykinin NK(1) receptors are highly expressed in brain regions involved in emotional control. We recently showed that NK(1)-mediated substance P neurotransmission is deeply involved in the control of aggressiveness. To get further insights into the NK(1) receptor/aggression relationship, we studied the role of NK(1) receptor-expressing neurons of the hypothalamic attack area, the only brain region in rats from which biting attacks can reliably be elicited by both electrical and neurochemical stimulation.

View Article and Find Full Text PDF

Disturbed social relations during childhood (e.g., social neglect) often lead to aggression-related psychopathologies in adulthood.

View Article and Find Full Text PDF

Emerging evidence suggests that the rewarding, abuse-related effects of nicotine are modulated by the endocannabinoid system of the brain. For example, pharmacological blockade or genetic deletion of cannabinoid CB(1) receptors can reduce or eliminate many abuse-related behavioral and neurochemical effects of nicotine. Furthermore, doses of Delta(9)-tetrahydrocannabinol and nicotine that are ineffective when given alone can induce conditioned place preference when given together.

View Article and Find Full Text PDF