Publications by authors named "Eva M Rico-Leo"

Aging impairs organismal homeostasis leading to multiple pathologies. Yet, the mechanisms and molecular intermediates involved are largely unknown. Here, we report that aged aryl hydrocarbon receptor-null mice () had exacerbated cellular senescence and more liver progenitor cells.

View Article and Find Full Text PDF

Skin integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. While interfollicular epidermal progenitors control normal homeostasis, hair follicle stem cells residing within the bulge provide regenerative potential during hair cycle and in response to wounding. The aryl hydrocarbon receptor (AhR) modulates cell plasticity and differentiation and its overactivation results in severe skin lesions in humans.

View Article and Find Full Text PDF

The bird retina offers an excellent model to investigate the mechanisms that coordinate the morphogenesis, histogenesis, and differentiation of neuron and glial cells. Although these developmental features have been intensively studied in the chicken (Gallus gallus, Linnaeus 1758), a precocial bird species, little is known about retinogenesis in altricial birds. The purpose of this study was to examine the differentiation of retinal cells in the altricial zebra finch (Taeniopygia guttata, Vieillot, 1817) and compare the results with those from previous studies in G.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles that produce most of the cellular ATP, and are involved in many other cellular functions such as Ca signaling, differentiation, apoptosis, cell cycle, and cell growth. One key process of mitochondrial dynamics is mitochondrial fusion, which is catalyzed by mitofusins (MFN1 and MFN2) and OPA1. The outer mitochondrial membrane protein MFN2 plays a relevant role in the maintenance of mitochondrial metabolism, insulin signaling, and mutations that cause neurodegenerative disorders.

View Article and Find Full Text PDF

Previous studies suggested that the aryl hydrocarbon receptor (AhR) contributes to mice reproduction and fertility. However, the mechanisms involved remain mostly unknown. Retrotransposon silencing by Piwi-interacting RNAs (piRNAs) is essential for germ cell maturation and, remarkably, AhR has been identified as a regulator of murine B1-SINE retrotransposons.

View Article and Find Full Text PDF
Article Synopsis
  • Melanoma is a serious skin cancer with low survival rates, and understanding the role of the dioxin receptor (AhR) in tumor growth and spread is essential for improving treatment and prognosis.
  • Research shows that AhR has opposing effects on melanoma depending on where it is expressed: it inhibits tumor growth when present in tumor cells but promotes it when found in the surrounding stroma.
  • Knockdown of AhR in melanoma cells increases tumor growth and metastasis, indicating that both the tumor and its microenvironment influence cancer progression, suggesting AhR could serve as a potential marker for melanoma.
View Article and Find Full Text PDF

Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Angiogenesis has key roles in development and in the progression of human diseases such as cancer. Consequently, identifying the novel markers and regulators of angiogenesis is a critical task. The dioxin receptor (AhR) contributes to vascular homeostasis and to the endothelial response to toxins, although the mechanisms involved are largely uncharacterized.

View Article and Find Full Text PDF

Delayed wound healing caused by inefficient re-epithelialization underlines chronic skin lesions such as those found in diabetes. The dioxin receptor (AhR) modulates cell plasticity and migration and its activation by occupational polycyclic aromatic hydrocarbons (PAHs) results in severe skin lesions such as contact hypersensitivity, dermatitis and chloracne. Using wild-type (Ahr+/+) and AhR-null (Ahr-/-) mouse primary keratinocyte cultures and tissue explants, we show that lack of AhR increases keratinocyte migration and accelerates skin re-epithelialization without affecting cell proliferation or recruitment of inflammatory cells.

View Article and Find Full Text PDF