The DNA mismatch repair (MMR) pathway and its regulation are critical for genomic stability. Mismatch repair (MMR) follows replication and repairs misincorporated bases and small insertions or deletions that are not recognized and removed by the proofreading polymerase. Cells deficient in MMR exhibit an increased overall mutation rate and increased expansion and contraction of short repeat sequences in the genome termed microsatellite instability (MSI).
View Article and Find Full Text PDFDNA mismatch repair (MMR) repairs replication errors, and MMR defects play a role in both inherited cancer predisposition syndromes and in sporadic cancers. MMR also recognizes mispairs caused by environmental and chemotherapeutic agents; however, in these cases mispair recognition leads to apoptosis and not repair. Although mutation avoidance by MMR is fairly well understood, MMR-associated proteins are still being identified.
View Article and Find Full Text PDFDNA mismatch repair (MMR) increases replication fidelity and genome stability by correcting DNA polymerase errors that remain after replication. Defects in MMR result in the accumulation of mutations and lead to human tumor development. Germline mutations in MMR cause the hereditary cancer syndrome, Lynch syndrome.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFEukaryotic DNA mismatch repair (MMR) involves both exonuclease 1 (Exo1)-dependent and Exo1-independent pathways. We found that the unstructured C-terminal domain of Saccharomyces cerevisiae Exo1 contains two MutS homolog 2 (Msh2)-interacting peptide (SHIP) boxes downstream from the MutL homolog 1 (Mlh1)-interacting peptide (MIP) box. These three sites were redundant in Exo1-dependent MMR in vivo and could be replaced by a fusion protein between an N-terminal fragment of Exo1 and Msh6.
View Article and Find Full Text PDFPrevious studies reported the reconstitution of an Mlh1-Pms1-independent 5' nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3' nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg(2+) and Mn(2+) for optimal activity.
View Article and Find Full Text PDFDNA mismatch repair (MMR) acts to repair mispaired bases resulting from misincorporation errors during DNA replication and also recognizes mispaired bases in recombination (HR) intermediates. Exonuclease 1 (Exo1) is a 5' → 3' exonuclease that participates in a number of DNA repair pathways. Exo1 was identified as an exonuclease that participates in Saccharomyces cerevisiae and human MMR where it functions to excise the daughter strand after mispair recognition, and additionally Exo1 functions in end resection during HR.
View Article and Find Full Text PDFCellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase β (Polβ) and XRCC1 is thought to facilitate repair by recruiting Polβ to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair.
View Article and Find Full Text PDFARTD1 (PARP1) is a key enzyme involved in DNA repair through the synthesis of poly(ADP-ribose) (PAR) in response to strand breaks, and it plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD(+) depletion and ATP loss; however, the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we compared the effects of ARTD1 activation and direct NAD(+) depletion.
View Article and Find Full Text PDFGenetic evidence has implicated multiple pathways in eukaryotic DNA mismatch repair (MMR) downstream of mispair recognition and Mlh1-Pms1 recruitment, including Exonuclease 1 (Exo1)-dependent and -independent pathways. We identified 14 mutations in POL30, which encodes PCNA in Saccharomyces cerevisiae, specific to Exo1-independent MMR. The mutations identified affected amino acids at three distinct sites on the PCNA structure.
View Article and Find Full Text PDFDNA damage plays a causal role in numerous disease processes. Hence, it is suggested that DNA repair proteins, which maintain the integrity of the nuclear and mitochondrial genomes, play a critical role in reducing the onset of multiple diseases, including cancer, diabetes and neurodegeneration. As the primary DNA polymerase involved in base excision repair, DNA polymerase ß (Polß) has been implicated in multiple cellular processes, including genome maintenance and telomere processing and is suggested to play a role in oncogenic transformation, cell viability following stress and the cellular response to radiation, chemotherapy and environmental genotoxicants.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is a devastating brain tumor with poor prognosis and low median survival time. Standard treatment includes radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). However, a large percentage of tumors are resistant to the cytotoxic effects of the TMZ-induced DNA lesion O(6)-methylguanine due to elevated expression of the repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) or a defect in the mismatch repair (MMR) pathway.
View Article and Find Full Text PDFTemozolomide (TMZ) is the preferred chemotherapeutic agent in the treatment of glioma following surgical resection and/or radiation. Resistance to TMZ is attributed to efficient repair and/or tolerance of TMZ-induced DNA lesions. The majority of the TMZ-induced DNA base adducts are repaired by the base excision repair (BER) pathway and therefore modulation of this pathway can enhance drug sensitivity.
View Article and Find Full Text PDFNuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage-induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells.
View Article and Find Full Text PDFAlkylating agents induce cell death in wild-type (WT) mouse embryonic fibroblasts (MEFs) by multiple mechanisms, including apoptosis, autophagy and necrosis. DNA polymerase beta (Pol beta) knockout (KO) MEFs are hypersensitive to the cytotoxic effect of alkylating agents, as compared to WT MEFs. To test the hypothesis that Parp1 is preferentially activated by methyl methanesulfonate (MMS) exposure of Pol beta KO MEFs, we have examined the relationship between Pol beta expression, Parp1 activation and cell survival following MMS exposure in a series of WT and Pol beta deficient MEF cell lines.
View Article and Find Full Text PDFBase excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance [DNA polymerase beta (Polbeta) deficiency or repair inhibition] enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polbeta triggers cell death dependent on poly(ADP-ribose) (PAR) polymerase activation yet independent of PAR-mediated apoptosis-inducing factor nuclear translocation or PAR glycohydrolase, suggesting that cytotoxicity is not from PAR or PAR catabolite signaling.
View Article and Find Full Text PDFOverexpression of N-methylpurine DNA glycosylase (MPG) has been suggested as a possible gene therapy approach to sensitize tumor cells to the cell-killing effects of temozolomide, an imidazotetrazine-class chemotherapeutic alkylating agent. In the present study, we show that both elevated MPG expression and short hairpin RNA-mediated loss of DNA polymerase beta (Pol beta) expression in human breast cancer cells increases cellular sensitivity to temozolomide. Resistance to temozolomide is restored by complementation of either wild-type human Pol beta or human Pol beta with an inactivating mutation specific to the polymerase active site yet functional for 5'-deoxyribose-phosphate (5'dRP) lyase activity.
View Article and Find Full Text PDF