In vitro metabolism studies of the spleen tyrosine kinase inhibitors AZ-A and AZ-B identified four unusual metabolites. M1 (mass-to-charge ratio 411) was formed by both molecules and was common to several analogs (AZ-C to AZ-H) sharing the same core structure, appearing to derive from the complete loss of a pendent 3,4-diaminotetrahydropyran ring and pyrazole ring cleavage resulting in a nonobvious metabolite. M2-M4 were formed by AZ-A and a subset of the other compounds only and apparently resulted from a sequential loss of H from parent.
View Article and Find Full Text PDFNanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFIn this article, we report the discovery of a series of pyrimidopyridones as inhibitors of IRAK4 kinase. From a previously disclosed 5-azaquinazoline series, we found that switching the pyridine ring for an N-substituted pyridone gave a novel hinge binding scaffold which retained potency against IRAK4. Importantly, introduction of the carbonyl established an internal hydrogen bond with the 4-NH, establishing a conformational lock and allowing truncation of the large basic substituent to a 1-methylcyclopyl group.
View Article and Find Full Text PDFBackground: Emotion dysfunction and anhedonia are main problems in borderline personality disorder (BPD). In the present functional magnetic resonance imaging (fMRI) study, we investigated neural activation during the processing of happy faces and its correlates with habitual emotion acceptance in patients with BPD.
Methods: 22 women with BPD and 26 female healthy controls watched movie clips of happy and neutral faces during fMRI without any instruction of emotion regulation.
The epidermal growth factor receptor (EGFR) harboring activating mutations is a clinically validated target in non-small-cell lung cancer, and a number of inhibitors of the EGFR tyrosine kinase domain, including osimertinib, have been approved for clinical use. Resistance to these therapies has emerged due to a variety of molecular events including the C797S mutation which renders third-generation C797-targeting covalent EGFR inhibitors considerably less potent against the target due to the loss of the key covalent-bond-forming residue. We describe the medicinal chemistry optimization of a biochemically potent but modestly cell-active, reversible EGFR inhibitor starting point with sub-optimal physicochemical properties.
View Article and Find Full Text PDFInhibition processing is an inherent part of cognitive and behavioral control. The aim of the present study was to develop and investigate psychometric criteria of an experimental paradigm that combines Stroop interference and negative priming, both of which involve inhibitory processes. We adopted a Stroop matching paradigm assessing interference control and implemented a negative priming condition.
View Article and Find Full Text PDFIn this article, we report the discovery of a series of 5-azaquinazolines as selective IRAK4 inhibitors. From modestly potent quinazoline , we introduced a 5-aza substitution to mask the 4-NH hydrogen bond donor (HBD). This allowed us to substitute the core with a 2-aminopyrazole, which showed large gains in cellular potency despite the additional formal HBD.
View Article and Find Full Text PDFIntroduction: Previous research suggests that specific symbol features attenuate symbol comprehension deficits in seniors suffering from Alzheimer disease dementia (ADD). However, it remains unclear whether these findings also apply to other disorders associated with cognitive dysfunctions.
Methods: Ninety healthy controls, 30 patients with major depressive disorder (MDD), 35 patients with mild cognitive impairment (MCI), and 55 patients with ADD performed a Symbol Processing Task with 4 different symbol categories.
We have developed a series of orally efficacious IRAK4 inhibitors, based on a scaffold hopping strategy and using rational structure based design. Efforts to tackle low permeability and high efflux in our previously reported pyrrolopyrimidine series (Scott et al., 2017) led to the identification of pyrrolotriazines which contained one less formal hydrogen bond donor and were intrinsically more lipophilic.
View Article and Find Full Text PDFTargeted covalent inhibition is an established approach for increasing the potency and selectivity of potential drug candidates, as well as identifying potent and selective tool compounds for target validation studies. It is evident that identification of reversible recognition elements is essential for selective covalent inhibition, but this must also be achieved with the appropriate level of inherent reactivity of the reactive functionality (or "warhead"). Structural changes that increase or decrease warhead reactivity, guided by methods to predict the effect of those changes, have the potential to tune warhead reactivity and negate issues related to potency and/or toxicity.
View Article and Find Full Text PDFThe highly enantioselective alkylation of α-CF enolates, generated from triketopiperazines, has been accomplished through use of a bifunctional thiourea organocatalyst to facilitate 1,4-addition to varied enone acceptors. On treatment with appropriate nitrogen nucleophiles, the chiral triketopiperazine products undergo a metamorphosis, to provide novel fused heterocyclic lactams such as extended pyrazolopyrimidines.
View Article and Find Full Text PDFRationale: The incubation of CPAQOP (1-[(2R)-2-[[4-[3-chloro-4-(2-pyridyloxy)anilino]quinazolin-5-yl]oxymethyl]-1-piperidyl]-2-hydroxy) with human liver microsomes generated several metabolites that highlighted the hydroxyacetamide side chain was a major site of metabolism for the molecule. The metabolites were derived predominantly from oxidative biotransformations; however, two unexpected products were detected by liquid chromatography/ultraviolet/mass spectrometry (LC/UV/MS) and identified as methanol adducts. This observation prompted further LC/MS investigations into their formation.
View Article and Find Full Text PDFOptimization of cellular lipophilic ligand efficiency (LLE) in a series of 2-anilino-pyrimidine IGF-1R kinase inhibitors led to the identification of novel 2-(pyrazol-4-ylamino)-pyrimidines with improved physicochemical properties. Replacement of the imidazo[1,2-a]pyridine group of the previously reported inhibitor 3 with the related pyrazolo[1,5-a]pyridine improved IGF-1R cellular potency. Substitution of the amino-pyrazole group was key to obtaining excellent kinase selectivity and pharmacokinetic parameters suitable for oral dosing, which led to the discovery of (2R)-1-[4-(4-{[5-chloro-4-(pyrazolo[1,5-a]pyridin-3-yl)-2-pyrimidinyl]amino}-3,5-dimethyl-1H-pyrazol-1-yl)-1-piperidinyl]-2-hydroxy-1-propanone (AZD9362, 28), a novel, efficacious inhibitor of IGF-1R.
View Article and Find Full Text PDF1. Paracetamol overdose remains the leading cause of acute liver failure in humans. This study was undertaken in cynomolgus monkeys to study the pharmacokinetics, metabolism and the potential for hepatotoxic insult from paracetamol administration as a possible model for human toxicity.
View Article and Find Full Text PDFFenclozic acid (Myalex) was developed by ICI pharmaceuticals in the 1960s for the treatment of rheumatoid arthritis and was a promising compound with a good preclinical safety profile and efficacy. While it did not show adverse hepatic effects in preclinical animal tests or initial studies in man [ Chalmers et al. Ann.
View Article and Find Full Text PDFSuccessful early attrition of potential problematic compounds is of great importance in the pharmaceutical industry. The lead compound in a recent project targeting neuropathic pain was susceptible to metabolic bioactivation, which produced reactive metabolites and showed covalent binding to protein. Therefore, as a part of the backup series for this compound several structural modifications were explored to mediate the reactive metabolite and covalent binding risk.
View Article and Find Full Text PDFHighly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 have caused numerous outbreaks in diverse poultry species and rising numbers of human infections. Both HPAIV subtypes support a growing concern of a pandemic outbreak, specifically via the avian-human link. Natural reassortment of both HPAIV subtypes is a possible event with unpredictable outcome for virulence and host specificity of the progeny virus for avian and mammalian species.
View Article and Find Full Text PDFDrug reactivity and bioactivation are of major concern to the development of potential drug candidates in the pharmaceutical industry (Chem Res Toxicol 17:3-16, 2004; Chem Res Toxicol 19:889-893, 2006). Identifying potentially problematic compounds as soon as possible in the discovery process is of great importance, so often early in vitro screening is used to speed up attrition. Identification of reactive moieties is relatively straightforward with appropriate in vitro trapping experiments; however, on occasion unexpected reactive intermediates can be found later during more detailed in vivo studies.
View Article and Find Full Text PDFZibotentan (ZD4054) is a specific endothelin A (ET(A)) receptor antagonist that is in clinical development for the treatment of castration-resistant prostate cancer (CRPC) and has shown a promising signal for improvement in overall survival compared with placebo in a Phase II study of patients with metastatic CRPC. In this study, the pharmacokinetics, disposition and metabolism of zibotentan were evaluated following administration of a single oral dose of [(14)C]-zibotentan 15 mg to six healthy subjects. Zibotentan was rapidly absorbed, with the maximum zibotentan plasma concentration being observed 1 hour after administration.
View Article and Find Full Text PDFThis paper presents an overview of a cross-species investigation of the metabolic fate of [(14)C]-zibotentan (ZD4054), with particular focus on the main analytical challenges encountered during the study. A combination of detection methods were used including HPLC coupled to UV, RAD and/or MS(MS), and (1)H NMR spectroscopy. The objective was to characterise and identify the major metabolites found in the circulation and excreta of rat and dog for comparison with those produced in human.
View Article and Find Full Text PDFThe identification of drug metabolites in biofluids such as urine, plasma and bile is an important step in drug discovery and development. Proton nuclear magnetic resonance ((1)H-NMR) spectroscopy can provide detailed information regarding the structural transformation of a compound as a consequence of metabolism. However, successful identification of drug metabolites by (1)H-NMR spectroscopy is generally compromised by the presence of endogenous metabolites, which can obscure the signals of the drug metabolites in question.
View Article and Find Full Text PDFHighly pathogenic avian influenza viruses (HPAIV) with reassorted NS segments from H5- and H7-type avian virus strains placed in the genetic background of the A/FPV/Rostock/34 HPAIV (FPV; H7N1) were generated by reverse genetics. Virological characterizations demonstrated that the growth kinetics of the reassortant viruses differed from that of wild-type (wt) FPV and depended on whether cells were of mammalian or avian origin. Surprisingly, molecular analysis revealed that the different reassortant NS segments were not only responsible for alterations in the antiviral host response but also affected viral genome replication and transcription as well as nuclear ribonucleoprotein (RNP) export.
View Article and Find Full Text PDFCediranib (4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-methoxy-7-[3-(1-pyrrolidinyl)propoxy]quinazoline; RECENTIN), a vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor (TKI) of all three VEGF receptors, is currently in Phase III clinical trials for the first-line treatment of colorectal cancer and the treatment of recurrent glioblastoma. During its clinical development a unique human metabolite, an N(+)-glucuronide, was identified as a major circulating metabolite and one of the major metabolites excreted into faeces. Given the possibility of four sites for the conjugation of the glucuronic acid moiety, determination of the location of the conjugation site on cediranib was warranted.
View Article and Find Full Text PDFModeling NMR-based metabolomics data often involves linear methods such as principal component analysis (PCA) and partial least squares (PLS). These methods have the objective of describing the main variance in the data and maximum covariance between the predictor variables and some response variable respectively. If the experiment is designed to investigate temporal biological fluctuations, however, the factors obtained become difficult to interpret in a biological context.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
August 2007
Ultra-performance liquid chromatography (UPLC) coupled to orthogonal acceleration time-of-flight mass spectrometry (oa-TOFMS) in positive electrospray ionization mode was used to obtain metabolite profiles for urine obtained from three strains of Zucker rat. These were the Zucker lean, the Zucker (fa/fa) obese and the Zucker lean/(fa) cross. Clear age- and strain-related differences were noted with the leptin-deficient (fa/fa) obese animal showing significant differences from both the other Zucker rat strains with respect to metabolite profiles.
View Article and Find Full Text PDF