Publications by authors named "Eva Kritikou"

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin () gene. We report the design of a series of pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of mRNA transcripts and protein levels.

View Article and Find Full Text PDF

Background: The immune checkpoint receptor lymphocyte-activation gene 3 (LAG3) is a new target for immune checkpoint blockade (ICB), but the effects of LAG3 on atherosclerosis are not known.

Objectives: The aim of the study was to evaluate the role of LAG3 on plaque inflammation using murine hypercholesterolemic models of atherosclerosis.

Methods: To study the role of LAG3 in atherosclerosis, we investigated both bone marrow chimeras lacking LAG3 in hematopoietic cells as well as global knockout mice.

View Article and Find Full Text PDF

The presence of mast cells in human atherosclerotic plaques has been associated with adverse cardiovascular events. Mast cell activation, through the classical antigen sensitized-IgE binding to their characteristic Fcε-receptor, causes the release of their cytoplasmic granules. These granules are filled with neutral proteases such as tryptase, but also with histamine and pro-inflammatory mediators.

View Article and Find Full Text PDF

Mast cells (MCs) are potent innate immune cells that aggravate atherosclerosis through the release of proinflammatory mediators inside atherosclerotic plaques. Similarly, CD4 T cells are constituents of the adaptive immune response and accumulate within the plaques following lipid-specific activation by APCs. Recently it has been proposed that these two cell types can interact in a direct manner.

View Article and Find Full Text PDF

Background And Aims: The development of atherosclerosis is tightly regulated by the innate and adaptive immune system. Communication between these two compartments occurs, among others, upon presentation of lipid antigens to the NKT cell population by CD1d-expressing antigen-presenting cells. Recent evidence states that also mast cells express CD1d and can directly communicate with NKT cells.

View Article and Find Full Text PDF

Aims: T lymphocytes play an important role in atherosclerosis development, but the role of the CD8+ T-cell remains debated, especially in the clinically relevant advanced stages of atherosclerosis development. Here, we set out to determine the role of CD8+ T-cells in advanced atherosclerosis.

Methods And Results: Human endarterectomy samples analysed by flow cytometry showed a negative correlation between the percentage of CD8+ T-cells and macrophages, suggesting a possible protective role for these cells in lesion development.

View Article and Find Full Text PDF

Objective: Inflammasomes are multiprotein complexes, and their activation has been associated with cardiovascular disease. Inflammasome activation leads to secretion of caspase-1 by innate immune cells, resulting in the activation of interleukin-1β. Recently, a potent and selective inhibitor of the NLRP3 inflammasome, MCC950, was described.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA antagonism using the small molecule Ki16425.

View Article and Find Full Text PDF

Mast cells comprise an innate immune cell population, which accumulates in tissues proximal to the outside environment and, upon activation, augments the progression of immunological reactions through the release and diffusion of either pre-formed or newly generated mediators. The released products of mast cells include histamine, proteases, as well as a variety of cytokines, chemokines and growth factors, which act on the surrounding microenvironment thereby shaping the immune responses triggered in various diseased states. Mast cells have also been detected in the arterial wall and are implicated in the onset and progression of numerous cardiovascular diseases.

View Article and Find Full Text PDF

The role of interleukin (IL)-17 in cancer remains controversial. In view of the growing interest in the targeting of IL-17, knowing its cellular sources and clinical implications is crucial. In the present study, we unraveled the phenotype of IL-17 expressing cells in cervical cancer using immunohistochemical double and immunofluorescent triple stainings.

View Article and Find Full Text PDF

During cortical development, coordination of proliferation and differentiation ensures the timely generation of different neural progenitor lineages that will give rise to mature neurons and glia. Geminin is an inhibitor of DNA replication and it has been proposed to regulate cell proliferation and fate determination during neurogenesis via interactions with transcription factors and chromatin remodeling complexes. To investigate the in vivo role of Geminin in the maintenance and differentiation of cortical neural progenitors, we have generated mice that lack Geminin expression in the developing cortex.

View Article and Find Full Text PDF