Studies on Huntington's disease (HD) demonstrated altered immune response in HD gene carriers. Using multiplexing immunoassay, we simultaneously investigated seven cytokines in secretomes of microglia and blood monocytes, cerebrospinal fluid (CSF) and serum collected from transgenic HD minipigs at pre-symptomatic disease stage. Decline in IFNα and IL-10 was observed in CSF and secretome of microglia whilst elevated IL-8 and IL-1β levels were secreted by microglia.
View Article and Find Full Text PDFNeurodegenerative diseases are devastating disorders and the demands on their treatment are set to rise in connection with higher disease incidence. Knowledge of the spatiotemporal profile of cellular protein expression during neural differentiation and definition of a set of markers highly specific for targeted neural populations is a key challenge. Intracellular proteins may be utilized as a readout for follow-up transplantation and cell surface proteins may facilitate isolation of the cell subpopulations, while secreted proteins could help unravel intercellular communication and immunomodulation.
View Article and Find Full Text PDFProteomics Clin Appl
February 2015
Huntington's disease (HD) is the most common inherited neurodegenerative disorder among polyglutamine (polyQ) diseases caused by cytosine-adenine-guanine repeat expansion in exon 1 of the huntingtin gene whose translation results in polyQ stretch in the N-terminus of the huntingtin protein (HD protein). This mutation significantly affects huntingtin conformation, proteolysis, PTMs, as well as its ability to bind interacting proteins. As a consequence, a variety of cellular mechanisms such as transcription, mitochondrial energy metabolism, axonal transport, neuronal vulnerability to oxidative stress, neurotransmission, and immune response are altered and involved in the pathogenesis of HD.
View Article and Find Full Text PDF