Publications by authors named "Eva Kiserdei"

The aim of this study was to investigate the impact of formulation excipients and solubilizing additives on dissolution, supersaturation, and membrane transport of an active pharmaceutical ingredient (API). When a poorly water-soluble API is formulated to enhance its dissolution, additives, such as surfactants, polymers, and cyclodextrins, have an effect not only on dissolution profile but also on the measured physicochemical properties (solubility, pK, permeability) of the drug while the excipient is present, therefore also affecting the driving force of membrane transport. Meloxicam, a nonsteroidal anti-inflammatory drug, was chosen as a poorly water-soluble model drug and formulated in order to enhance its dissolution using solvent-based electrospinning.

View Article and Find Full Text PDF

Since it is a well-known fact that among the newly discovered active pharmaceutical ingredients the number of poorly water soluble candidates is continually increasing, dissolution enhancement of poorly water soluble drugs has become one of the central challenges of pharmaceutical studies. So far the preclinical studies have been mainly focused on formulation methods to enhance the dissolution of active compounds, in many cases disregarding the fact that the formulation matrix not only affects dissolution but also has an effect on the transport through biological membranes, changing permeation of the drug molecules. The aim of this study was to test an electrospun cyclodextrin-based formulation of aripiprazole with the novel μFlux apparatus, which monitors permeation together with dissolution, and by this means better in vitro-in vivo correlation is achieved.

View Article and Find Full Text PDF