Besides being a key effector arm of innate immunity, a plethora of non-canonical functions of complement has recently been emerging. Factor H (FH), the main regulator of the alternative pathway of complement activation, has been reported to bind to various immune cells and regulate their functions, beyond its role in modulating complement activation. In this study we investigated the effect of FH, its alternative splice product FH-like protein 1 (FHL-1), the FH-related (FHR) proteins FHR-1 and FHR-5, and the recently developed artificial complement inhibitor mini-FH, on two key innate immune cells, monocytes and neutrophilic granulocytes.
View Article and Find Full Text PDFComplement plays an essential role in the opsonophagocytic clearance of apoptotic/necrotic cells. Dysregulation of this process may lead to inflammatory and autoimmune diseases. Factor H (FH), a major soluble complement inhibitor, binds to dead cells and inhibits excessive complement activation on their surface, preventing lysis, and the release of intracellular material, including DNA.
View Article and Find Full Text PDFThe complex effects of estradiol on non-reproductive tissues/cells, including lymphoid tissues and immunocytes, have increasingly been explored. However, the role of sex hormone binding globulin (SHBG) in the regulation of these genomic and non-genomic actions of estradiol is controversial. Moreover, the expression of SHBG and its internalization by potential receptors, as well as the influence of SHBG on estradiol uptake and signaling in lymphocytes has remained unexplored.
View Article and Find Full Text PDFComplement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence.
View Article and Find Full Text PDFFactor H-related protein (FHR) 1 is one of the five human FHRs that share sequence and structural homology with the alternative pathway complement inhibitor FH. Genetic studies on disease associations and functional analyses indicate that FHR-1 enhances complement activation by competitive inhibition of FH binding to some surfaces and immune proteins. We have recently shown that FHR-1 binds to pentraxin 3.
View Article and Find Full Text PDFFactor H (FH) is a major inhibitor of the alternative pathway of complement activation in plasma and on certain host surfaces. In addition to being a complement regulator, FH can bind to various cells via specific receptors, including binding to neutrophil granulocytes through complement receptor type 3 (CR3; CD11b/CD18), and modulate their function. The cellular roles of FH are, however, poorly understood.
View Article and Find Full Text PDFGalectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance.
View Article and Find Full Text PDFGalectins are glycan-binding proteins that regulate innate and adaptive immune responses, and some confer maternal-fetal immune tolerance in eutherian mammals. A chromosome 19 cluster of galectins has emerged in anthropoid primates, species with deep placentation and long gestation. Three of the five human cluster galectins are solely expressed in the placenta, where they may confer additional immunoregulatory functions to enable deep placentation.
View Article and Find Full Text PDFThe actual level of circulating estrogen (17β-estradiol, E2) has a serious impact on regulation of diverse immune cell functions, where their classical cytoplasmic receptors, ERα and ERβ, act as nuclear transcriptional regulators of multiple target genes. There is growing evidence, however, for rapid, "non-nuclear" regulatory effects of E2 on lymphocytes. Such effects are likely mediated by putative membrane-associated receptor(s) (mER), but the mechanistic details and the involved signaling pathways still remained largely unknown because of their complexity.
View Article and Find Full Text PDF