Single-solute batch kinetic and isotherm experiments were conducted in Type 1 (18.2 MΩ·cm resistivity) water supplemented with 10 mM carbonate buffer (pH 7.75, 25 °C) for nine drinking water relevant perfluoroalkyl chemicals and three bituminous-coal based granular activated carbons (GACs).
View Article and Find Full Text PDFMultiple non-targeted analysis tools were used to look for a broad range of possible chemical contaminants present in surface and drinking water using liquid chromatography separation and high-resolution mass spectrometry detection, including both quadrupole time of flight (Q-ToF) and Orbitrap instruments. Two chromatographic techniques were evaluated on an LC-Q-ToF with electrospray ionization in both positive and negative modes: (1) the traditionally used reverse phase C18 and (2) the hydrophilic interaction liquid chromatography (HILIC) aimed to capture more polar contaminants that may be present in water. Multiple ionization modes were evaluated with an LC-Orbitrap, including electrospray (ESI) and atmospheric pressure chemical ionization (APCI), also in both positive and negative modes.
View Article and Find Full Text PDFA coconut shell (AC1230CX) and a bituminous coal based (F400) granular activated carbon (GAC) were ground with mortar and pestle (MP), a blender, and a bench-scale ball milling unit (BMU). Blender was the most time-efficient for particle size reduction. Four size fractions ranging from 20 × 40 to 200 × 325 were characterized along with the bulk GACs.
View Article and Find Full Text PDFWhen implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts).
View Article and Find Full Text PDFTransformation of endocrine active compounds (EACs) by either chlorination (Cl-D) or UV disinfection (UV-D) was studied by field sampling and bench-scale validation studies. Field testing assessed concentration of 13 EACs in effluent at two Chicago area 250 MGD wastewater reclamation plants (WRP) over two years. One WRP uses chlorination/dechlorination while the other employs UV disinfection.
View Article and Find Full Text PDF