Publications by authors named "Eva Guiducci"

The opportunistic fungal pathogen Candida albicans can cause invasive infections in susceptible hosts and the innate immune system, in particular myeloid cell-mediated immunity, is critical for rapid immune protection and host survival during systemic candidiasis. Using a mouse model of the human disease, we identified a novel role of IL-23 in antifungal defense. IL-23-deficient mice are highly susceptible to systemic infection with C.

View Article and Find Full Text PDF

Neutrophils are the most abundant innate immune cells and the first line of defense against many pathogenic microbes, including the human fungal pathogen . Among the neutrophils' arsenal of effector functions, neutrophil extracellular traps (NETs) are thought to be of particular importance for trapping and killing the large fungal filaments by means of their web-like structures that consist of chromatin fibers decorated with proteolytic enzymes and host defense proteins. Peptidylarginine deiminase 4 (PAD4)-mediated citrullination of histones in activated neutrophils correlates with chromatin decondensation and extrusion and is widely accepted to act as an integral process of NET induction (NETosis).

View Article and Find Full Text PDF

The fungus Candida albicans thrives on a variety of human mucosae, yet the fungal determinants that contribute to fitness on these surfaces remain underexplored. Here, by screening a collection of C. albicans deletion strains in a mouse model of oral infection (oropharyngeal candidiasis), we identify several novel regulatory genes that modulate the fitness of the fungus in this locale.

View Article and Find Full Text PDF
Article Synopsis
  • Microglial cells play a crucial role in brain development, impacting neuronal loss and synaptic maturation.
  • Fractalkine, a key neuronal chemokine, increases during development and affects microglial function through its receptor CX3CR1; mice without CX3CR1 experience various neuronal defects due to poor microglial function.
  • Research shows that fractalkine signaling is essential for the proper development of microglial morphology and function, particularly their response to ATP and the presence of an outward rectifying K(+) current, highlighting the importance of fractalkine in microglial development.
View Article and Find Full Text PDF

Chronic inflammatory skin diseases, such as atopic dermatitis, affect a large percentage of the population, but the role of different immune cells in the pathogenesis of these disorders is largely unknown. Recently, we found that mice lacking fibroblast growth factor receptor 1 (Fgfr1) and Fgfr2 (K5-R1/R2 mice) in the epidermis have a severe impairment in the epidermal barrier, which leads to the development of a chronic inflammatory skin disease that shares many features with human atopic dermatitis. Using Fgfr1-/Fgfr2-deficient mice, we analyzed the consequences of the loss of mast cells.

View Article and Find Full Text PDF

Microglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice.

View Article and Find Full Text PDF